

6 March 2025

PROPOSED STRUCTURE PLAN & PRIVATE PLAN CHANGE, KARAKA ROAD, DRURY WEST

PRELIMINARY GEOTECHNICAL ASSESSMENT REPORT

Fisher & Paykel Healthcare Properties Limited AKL2022-0214AB Rev 5

AKL2022-0214AB		
Date	Revision	Comments
20 February 2023	А	Initial draft for internal review.
24 February 2023	0	Final issue to client.
2 October 2023	1	Issued to support Plan Change Application
23 May 2024	2	Minor changes at Client's request
3 February 2025	3	Additional aerial photos & update to Geohazard Assessment Summary for Clause 23 Request
19 February 2025	4	Minor changes at Client's request
6 March 2025	5	Minor changes at Client's request

	Name	Signature	Position		
Prepared by	Melissa Campbell	MCM	Senior Engineering Geologist		
Reviewed by	Chris Ritchie		Associate Engineering Geologist CMEngNZ, PEngGeol		
Authorised by	Richard Knowles	RT knowles	Principal Geotechnical Engineer CMEngNZ, CPEng		

TABLE OF CONTENTS

1	INT	RODUCTION	2
	1.1	Project Brief	2
	1.2	Scope of Work	2
2	SIT	E LOCATION AND LANDFORM	2
3	RE	LATED REPORTS REVIEWED	3
4	PR	OPOSED DEVELOPMENT	3
5	HIS	STORIC AERIAL PHOTOGRAPHS	3
6	GR	OUND MODEL	5
	6.1	Geomorphology	5
	6.2	Ground Investigation	5
	6.3	Published Geology	5
7	GE	OHAZARDS ASSESSMENT & MITIGATION	7
8	SIT	E CONSTRAINTS	12
9	CO	NCLUSION	12
10) CL	OSURE	12

APPENDICES

Appendix A: CMW DRAWINGS

Appendix B: CMW REPORT AKS2022-0029AB

1 INTRODUCTION

1.1 Project Brief

Fisher & Paykel Healthcare Properties Limited (FPH) is proposing a Structure Plan (Structure Plan) and Private Plan Change (Plan Change) for land zoned Future Urban and Rural – Mixed Rural, located at 300, 328, 350, 370, & 458 Karaka Road, Drury (the Site). The land is bound by State Highway 22 to the north, Oira Creek to the west and the railway network of the North Island Main Trunk (NIMT) Line to the south.

This Structure Plan is proposed in replacement of the Drury-Opāheke Structure Plan for this part of Drury West and the Plan Change will involve rezoning the land that is currently zoned Future Urban to Business – Light Industry. The Rural-Mixed Rural zoned land in the west of the Site is included in the Structure Plan but is not proposed to be rezoned as part of the Plan Change.

The purpose of the Structure Plan and Plan Change is to facilitate the future development of a research & development and manufacturing campus to support the growth and expansion of Fisher & Paykel Healthcare.

CMW Geosciences (CMW) was engaged by Fisher & Paykel Healthcare Properties Limited (FPH) to carry out preliminary geotechnical reporting for the land described above. CMW has previously undertaken investigation and reporting on a large central portion of the subject site; this has been reviewed and incorporated into this report.

This report is to provide geotechnical input into the Structure Plan and Plan Change application.

1.2 Scope of Work

The scope of work and associated terms and conditions of our engagement were detailed in our services proposal letter referenced AKL2022-0214AA, Rev 0 dated 17 November 2022. The scope of work is defined as follows:

- Desktop analysis of the Site, including review of available existing reports, historic aerial photographs and published geology.
- Site walkover and geomorphology mapping.
- Provision of plans showing anticipated geology, geomorphology, and geotechnical hazard/constraint zones.
- Preliminary liquefaction assessment based on Cone Penetrometer Test (CPT) data. (CPT data from our previous investigation and reporting was used for this assessment).
- A Geotechnical Assessment Report summarising the above, including any areas of historic filling identified and
 discussion on potential constraints to future urban development. This report was provided initially for input to
 the draft Structure Plan and has been updated for the final Structure Plan and Plan Change application.

2 SITE LOCATION AND LANDFORM

- The Site comprises an area of approximately 105 hectares (of which approximately 88 hectares is the Plan Change portion of the Site) and is located immediately south of State Highway 22 (Karaka Road) and north of the North Island Main Trunk Railway Line, as shown in *Figure 1*.
- The current general landform is presented on the attached Site Investigation Plan (Appendix A) and in Figure
 2
- The subject area comprises 9 parcels of land, legally described as Lot 7 DP 14876, Pt Lot 5 DP 14876, Pt Lot 6 DP 14876, Pt Lot 3 DP 14876, Lot 4 DP 14876, Pt Lot 6 DP 14876, Lot 1 DP 205837, Lot 2 DP 523765 and Lot 1 DP 523765. These properties are identified as 300, 328, 350, 370 & 458 Karaka Road, Drury.
- Current land use is predominantly pasture, with a scattering of trees and shelter belts. Two large glasshouses occupy Lot 2 DP 523765 (328 Karaka Road), lying parallel with the railway line in the south-central portion of the Site. Four long sheds, previously accommodating a chicken farm, are in the elevated centre of the Site. A packhouse and associated parking areas occupy Lot 1 DP 523765 (300 Karaka Road) in the north-eastern corner.
- Stand-alone rural-residential dwellings and assorted farm buildings are present across the subject area. Due to the historical farming land use, rubbish fills, offal pits and uncontrolled fills may exist.

- The landform typically comprises very gently to gently sloping farmland, falling from the east towards the west. There are several natural drainage depressions comprising defined, tree-lined gullies as well as relatively shallow basins, some of which have been modified with the formation of farm ponds. In the western portion, the land falls gently to the stream (Oira Creek) which flows northwards along the boundary.
- Under the Auckland Council Unitary Plan, the land is currently zoned Future Urban, with the exception of the south-western corner, zoned Rural Mixed Rural.

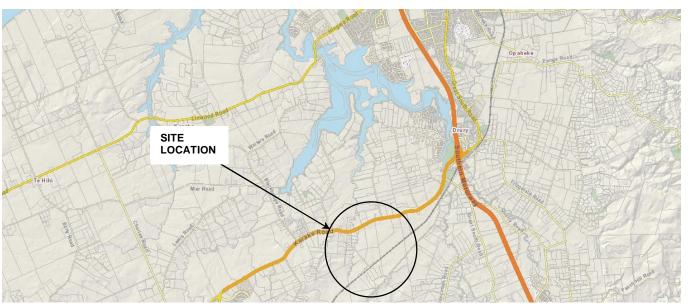


Figure 1: Site Location (Auckland Council GeoMaps)

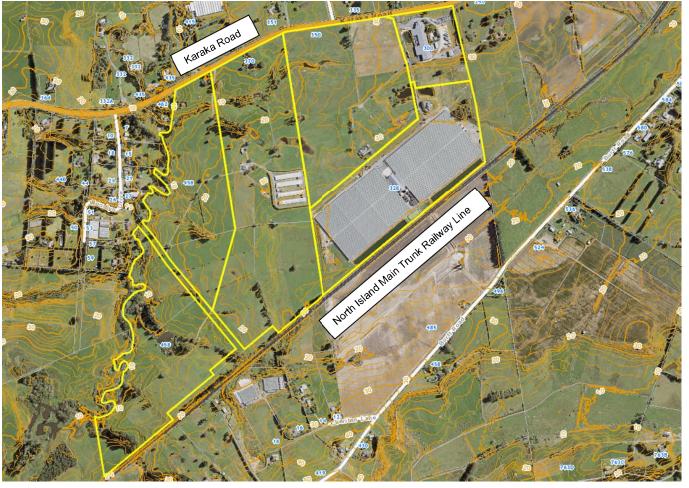


Figure 2: Landform (Auckland Council GeoMaps)

RELATED REPORTS REVIEWED

- CMW Geosciences Geotechnical Assessment Report, 350 & 370 Karaka Road, Drury, Ref AKS2022-0029AB Rev.0, 13 July 2022. (at Appendix B).
- Geotek Services Ltd Geotechnical Investigation Report, 328 Karaka Road, Drury, Ref 948, 29 June 1999.

PROPOSED DEVELOPMENT

At this stage no concept plans are available, however it is our understanding that the Site is intended to be developed by the client for light industrial use. The Site will be zoned to enable business development.

Given that there are currently no earthworks proposals, we have made the following broad-brush assumptions (not be construed as limitations) so that we can provide commentary around the geotechnical suitability (or not) of the land in terms of land modification:

- Bulk earthworks comprising cuts and fills not exceeding 2m depth and:
- Future site development for commercial and medium-industrial buildings with Uniformly Distributed Floor Loadings of up to 30 kPa.

HISTORIC AERIAL PHOTOGRAPHS

Review of the earliest available aerial photographs shows the following:

- The Site was undeveloped in *May 1942* (Figure 3), with only minor dwellings and small farm buildings visible. The south-central portion of the Site where the large greenhouses now stand can be seen as low-lying and largely featureless. The central, more elevated areas are likely to be ancient erosional terrace features compared with the more recent gully erosion, evident as more sharply defined features, particularly in the west of the Site.
- By November 1961 (Figure 4), trees and shelterbelts were more frequent across the Site, but little further development was observed.
- July 1981 several ponds (highlighted in red in Figure 5) have been formed from existing watercourses.
- March 1988 two of the four chicken farm sheds have been constructed (highlighted in red in Figure 6). Four sheds are visible by 1996 (Figure 7).
- 2001 The large greenhouses and packing shed have been constructed, each with adjacent ponds. What appears to be topsoil stockpiles are immediately north of the glasshouses, together with two dwellings (or similar sized buildings). (Figure 8).
- 2006 the pond to the north of the glasshouses has been extended to the east of the accessway, presumably by a culvert. (Figure 9).
- 2017 further ponded water is visible in the centre of the site. (Figures 10 & 11). The northern of these two features appears to be artificially formed in what was previously a dry gully feature, whilst the southern has poorly defined edges with a fenceline crossing it, suggesting it is a temporary feature.

Figure 3: 1942 Aerial Photo (Retrolens)

Figure 4: 1961 Aerial Photo (Retrolens)

Figure 5: 1981 Aerial Photo (Retrolens)

Figure 6: 1988 Aerial Photo (Retrolens)

Figure 7: 1996 Aerial Photo (AC GeoMaps)

Figure 8: 2001 Aerial Photo (AC GeoMaps)

Figure 9: 2006 Aerial Photo (AC GeoMaps)

Figure 10: 2017 Aerial Photo (AC GeoMaps)

Figure 11: 2017 Aerial Photo (AC GeoMaps)

6 GROUND MODEL

6.1 Geomorphology

- The geomorphology of the Site was mapped by examination of aerial photography and during a site walkover and is shown in the Geology & Geomorphology Plan in Appendix A and in Figure 12.
- The geomorphology reflects the underlying geology and associated slope processes. The elevated areas are
 likely to be ancient erosional terrace features compared with the more recent gully erosion, evident as more
 sharply defined features.
- Benching / terrace features are discernible in places, corresponding to some extent with the heads of minor watercourses. This may indicate the contact between the overlying ash deposits and Puketoka Formation beneath.
- In the vicinity of creek at western boundary and the larger tributary in the north of the Site, slope instability features are present, such as minor scarps and debris mounds. Those observed during our walkover are presented on the *Geomorphology Plan*, however it should be noted that not every feature present is recorded, particularly small-scale landslips in gully flanks.
- Land modification has occurred in several locations across the Site: in particular in areas underlying and adjacent to the large greenhouses, the chicken sheds, and the packhouse. Additionally, there are areas around the gullies where the man-made ponds have been formed which could contain disturbed ground.

6.2 Ground Investigation

- No further investigation has been carried out however the fieldwork previously conducted within the Site by CMW was reviewed and incorporated into this report. The entire Site is mapped as the same geological unit and our desktop study did not identify any significant features which warrant specific investigation at this stage of the project. Further specific investigation and design should be undertaken at the detailed design stage.
- This comprised the drilling of ten hand auger boreholes and four Cone Penetrometer (CPT) Tests. The investigation was carried out between 31 March and 14 April 2022.
- The investigation locations are shown on the Site Investigation Plan in *Appendix A*. Borehole and CPT logs are contained in the previous report in *Appendix B*.

6.3 Published Geology

- An overlay from published geological maps for the area, presented in *Figure 11*, depicts the regional geology
 as comprising Late Pliocene to Middle Pleistocene pumiceous alluvial deposits of the Puketoka Formation
 (Pup). These deposits are described as undifferentiated deposits of clays, silts and sands, with lenses of peaty
 or organic clays. Soils within this geology can be variable in strength and sensitive to disturbance, especially
 where pumiceous silts and sands are encountered.
- To the south of the Site are mapped volcanic deposits from the South Auckland Volcanic Field, consisting of lithic tuff, comprising comminuted pre-volcanic materials with basaltic fragments, and unconsolidated ash and lapilli deposits. The landform described above suggests these deposits may also exist within the Site.
- Based on the known history of the Site as farmland, some superficial depths of fill could be anticipated as a
 result of soft landscaping to create building platforms, farm tracks and ponds. Pockets of recent alluvial material
 can also be expected around gully features and other overland flow paths.
- The nearest active fault is the Drury Fault which is approximately 5km east of the Site.
- Geohazards associated with each geology were identified through the preliminary assessment presented in Section 7.

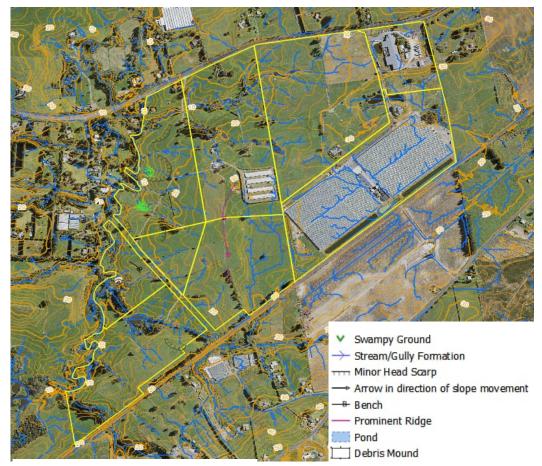


Figure 12: Geomorphology Plan

Figure 13: Geology Plan

Geological Unit	Location	Description	Behaviour
Topsoil	Encountered across the Site and in hand auger boreholes to depths of between 0.2 and 0.3 metres below ground level (mbgl). In HA02-22, topsoil was encountered to 0.9mbgl which we believe was in the location of the old topsoil stockpile identified in our historic aerial photograph review.		N/A
Fill	No evidence of fill was encountered in our hand auger boreholes. Fill was however noted in geotechnical reporting for the packhouse in the north-eastern corner of the Site. Based on our aerial photograph review, we expect several areas of fill deposits / disturbed ground: in and around the existing farm tracks, ponds and building platforms. Due to the historic farming use of the Site, there is potential for more widespread areas of uncertified / non-engineered fill.		Thorough site stripping and inspections will be required prior to the placement of any filling during earthworks construction, with any non-engineered filling identified and removed to the satisfaction of the supervising Geo-Professional. Depending on the quality and consistency of the material, it may be suitable for re-use as bulk filling.
Recent / Holocene Alluvial Material	Although not identified in our hand auger boreholes, we expect localised deposits of these materials in the gullies and ponds present across the Site. CPT02-22 was positioned in the middle of an old pond which was not holding water at the time of investigation. It is inferred that soft to firm soils extend up to 2.0m depth in this location.	poorly compacted.	Susceptible to soil creep and shallow flows on gentle slopes, particularly when saturated. Will usually subside if unsupported or overloaded. Subsidence (load induced settlement) is the predominant geohazard in this geology. Where encountered, these unsuitable soils will need to be mucked out and subsoil drainage installed before any bulk filling is undertaken. If significant depths are encountered, ground improvement or piled foundations may be required to limit consolidation settlements to acceptable limits for future structures.
South Auckland Volcanic Field – tuff	Encountered in hand auger boreholes across the Site at depths ranging from 1.2mbgl to 3.0mbgl.	Competent surficial volcanic ash soil. Typically consisted of very stiff to hard, clayey silt and silty clay with peak undrained shear strengths measuring in excess of 134kPa.	Capable of soil creep and slumping on steeper slopes. Landslip can be expected in the vicinity of incised watercourses.
Puketoka Formation	volcanic soils, to at least the target depth of 5m. The four CPTs conducted refused on dense / hard materials at between 17 to 20m, indicating this unit extends to at least this depth. Where encountered, groundwater was within this unit – at approximately 5m depth in the central elevated portion of the Site, and between 1-3m in low-lying areas. In HA09-22 in the low-lying area in the south of the Site, peat was encountered to a depth of 1.0mbgl, overlying soft to firm organic clays to 3.2mbgl. It should be cautioned that elsewhere in this low-lying area the peat may be thicker/ extend deeper.	and may contain peat. May interfinger with the tuff of the South Auckland Volcanic Field described above. Generally lower in strength and more variable in consistency compared with the everties valencies these materials were still compared to the consistency of the same test in	Landslip can be expected in the vicinity of incised watercourses

7 GEOHAZARDS ASSESSMENT & MITIGATION

Two **Geohazard Zones** have been identified.

- **Zone 1** encompasses the more frequent instability features observed near the stream and watercourses in the western portion of the Site. We anticipate an esplanade reserve will be applied along the stream edge within this zone also. This zone will require specific investigation and assessment once development proposals area known.
- Zone 2 encompasses the remainder of the Site where instability may still occur but is likely to be more easily remediated with drainage and filling of gullies.

The presence of potentially compressible alluvial soils is common across both zones.

The extents of these areas are shown in the appended *Geohazard Zone Plan (Appendix A)*. The unmitigated Auckland Council Code of Practice for Land Development and Subdivision (ACCOP) risk ratings range from low to extreme, but residual risks following development will be very low to low and are considered acceptable. A guide to the assessment of risk ratings is provided beneath the summary table below.

Geol	eohazard Assessment Summary										
Item	Geotechnical	Description	Area Assessed	Assessment Outcome	Existing Risk	of Damage to Lar	nd / Structures	Mitigation Measure	Residual Risk of Damage to Land / Structures		
item	Hazard	Description	Area Assessed	Assessment Outcome	Likelihood	Consequence	Risk Rating	witigation Measure	Likelihood	Consequence	Risk Rating
1	Earthquake	Liquefaction	Entire Site	Low-lying areas such as those in the vicinity of the large glasshouses Liquefaction occurs in loose saturated cohesionless soils that are subject to cyclic shear loading during an earthquake. This process leads to pore pressure build-up, soil grains moving into suspension and temporary loss of strength causing vertical and lateral ground deformation. In accordance with MBIE/NZGS guidance the liquefaction susceptibility of the soils at this Site was assessed with respect to geological age and compositional (soil fabric and density) criteria. This assessment indicated a very low to low risk of liquefaction, however the sandy silts within the Puketoka Formation may have some susceptibility. In addition, four CPTs were analysed using the software package CLiq as part of our previous reporting. Full details of this analysis are in Section 6.5 of that report, at <i>Appendix B</i> . The results indicate low liquefaction risk for the site, considering importance level 2 structures.	1	5	5	Mitigation not required	1	5	5
		Lateral Spread	Entire Site	Due to the low liquefaction risk, lateral spread risk is anticipated to be low. In addition, subsurface conditions indicate that the reactive soils are below the depth of the non-liquefiable "crust"	1	5	5	Mitigation not required	1	5	5

Geor	nazard Assessme	ent Summary									
Item	Geotechnical	Description	Area Assessed	Assessment Outcome	Existing Risl	c of Damage to Lar	nd / Structures	Mitigation Measure	Residual Ris	k of Damage to La	nd / Structures
Item	Hazard	Description	Aled Assesseu	Assessment Outcome	Likelihood	Consequence	Risk Rating	willigation weasure	Likelihood	Consequence	Risk Rating
		Global Instability	Stream adjacent areas and slopes (Geohazard Zone 1)	The slopes in and around the defined gully margins are considered to be at risk of soil creep and shallow slump failures.	4	5	20	Slope stability remedial works in this geology typically includes installation of subsoil drainage, including underfill drains in mucked-out gully alignments, and placement of engineered fills in these gullies. If these gully flanks are not supported by bulk filling, specific slope stability assessment will be necessary.	1	5	5
	Slope Instability /	Soil Creep	Elevated areas and slopes (Entire Site)	Refer to Global Instability section above	4	4	16	Mitigated by design of slope gradients, including use of retaining walls and by design of footings.	1	4	4
2		Cut / Fill Batter Instability	Unknown (Future cut and fill areas)	Batters unknown as earthworks plans have not yet been provided.	3	4	12	Mitigated by stormwater control and surface stabilisation/ treatment in design.	1	4	4
	Landslide	Stream Bank Instability and Erosion	Stream adjacent areas	Refer to Global Instability section above.	3	5	15	Consider shallowing stream slope gradients, installing rip rap or gabions at the base of the stream to mitigate scour. A setback or specific design zone may be set in place from the crest of the stream bank slope to nearby structures where specific engineering design will be required.	1	5	5
		Bearing Capacity Failure	Entire Site	Alluvial terrace areas, particularly those adjacent to the western stream and the low-lying area occupied by the large glasshouses.	3	4	12	A consideration for large buildings and rapid loading on alluvial soils. Ground improvement techniques (such as preload/surcharge with or without wick drains or displacement piles) and/ or pile foundations.	1	4	4
3	Problematic Soils	Expansive Soils	Entire Site	Expansive soils are classified in NZS 3604 as those soils having a liquid limit of more than 50% and linear shrinkage of more than 15%. Lab testing was not undertaken in the site investigation. Soil expansivity to be assessed in the construction phase.	4	4	16	Soil expansivity to be assessed in the earthworks/construction phase of the project. Foundations to be designed accordingly for the Expansive Class.	1	4	4
4	Settlement	Compressible Soils	Soft Soils/Load Induced Settlement	Alluvial terrace areas, particularly those adjacent to the western stream and the low-lying area occupied by	4	5	20	In areas where fills are placed over soft deposits, allowance needs to be made for post- construction settlement of the fills	1	5	5

Geoh	azard Assessme	ent Summary									
14	Geotechnical	Description	A A	A Quis	Existing Risl	κ of Damage to Lar	nd / Structures	Balding day Balance	Residual Risk of Damage to Land / Structures		nd / Structures
Item	Hazard	Description	Area Assessed	Assessment Outcome	Likelihood	Consequence	Risk Rating	Mitigation Measure	Likelihood	Consequence	Risk Rating
				the large glasshouses potentially affected.				and the underlying ground that could cause damage to future structures.			
								Consideration in the design needs to be given to the quantum of settlement that is likely to occur (i.e., ensuring it is insufficient to influence the cut/ fill volumes and balance during earthworks and/ or damage structures) and the time taken for the settlement to occur (i.e., ensuring it will be largely completed by the time a normal civil works programme would likely be commencing). A preliminary settlement assessment was conducted on four CPTs using CPeT-IT software, as part of our previous reporting. (Section 6.9 of appended report, at <i>Appendix B</i>). Given that no earthworks proposals are available, filling in the order of 2m above existing levels and future widespread industrial building loads of 30 kPa were assessed. The worst-case primary settlement calculated was approximately 35mm. Typical post construction settlements over a design life of 50 years are predicted to be less than 15mm. Generally this shows that the ground conditions encountered are relatively incompressible.			
								Remedial options for speeding settlements in areas of deep compressible soils include preloading and installation of wick drains but based on our experience, pre-loading without wick drains is able to provide good results. Locations and heights of surcharge must be subject to geotechnical review to avoid causing bearing capacity			
5	Erosion	Cut Batters	Unknown (Future cut areas)	Earthworks plan not provided.	3	4	12	failure in the underlying soils. Maximum cut batter of 1V:3H, or steeper with surface	1	4	4

Geol	eohazard Assessment Summary										
Item	Geotechnical Hazard	Description	Area Assessed	Assessment Outcome	Existing Risk of Damage to Land / Structures			Mitigation Measure	Residual Risk of Damage to Land / Structures		
					Likelihood	Consequence	Risk Rating		Likelihood	Consequence	Risk Rating
								stabilisation/treatment included in design.			
		Fill Batters	Unknown (Future fill areas)	Earthworks plan not provided	3	4	12	Appropriate stormwater control and surface stabilisation/treatment in design required.	1	4	4

		_	RISK ASSESSMENT GUID					
	Risk Matrix			CONSEQUENCE				
		Insignificant (1)	Minor (2)	Moderate (3)	Major (4)	Catastrophic (5)		
		No significant community (e.g.	Local community (e.g. sociological or cultural) concerns that can be dealt with.	Injury or Illness likely.	Injury or permanent disability likely.	Fatality likely.		
	Health & Safety and Disruption	sociological or cultural) issues.	OR	OR	OR	OR Major community (e.g. sociological or cultural) concerns causing major		
	(Including staff, sub-contractors or the public, injury or illness)	Localised short term reversible	Localised minor reversible damage and disruption to the community, with no potential public safety issues or long-term effect.	Significant community (e.g. sociological or cultural) concerns causing delays and modifications to plans.	Widespread significant community (e.g. sociological or cultural) causing significant delays and modifications to plans.	re-think or complete failure of plans. Localised or widespread damage and disruption to the community (any duration), with potential for loss of life.		
		disruption to the community,		OR	OR:	.2537		
		resulting in no noticeable damage.		Localised medium term (1 to 3 weeks) reversible damage and disruption to the community, with some potential safety issues.	Localised or widespread long term (greater than 3 weeks) reversible or irreversible damage; disruption to community.			
		Small localised and reversible environmental impact:	Contained and reversible (minimal) environmental impact.	Measurable damage to the environment; significant corrective action.	Irreversible localised damage (major) to the environment	Extensive irreversible damage (widespread) to the environment.		
ES	Environment (Including air quality and noise, water	+ Slight, short term damage to use of land and/or water	OR OR	OR	OR	OR		
VTEGOR	contamination or sedimentation, self- contamination, impact on others, protected areas or species.)	+ Slight short-term damage to land and/or water ecosystems	Localised minor reversible damage to (use of) land and/or water	Localised, medium term reversible damage to land and/or water ecosystems	Widespread, long term reversible damage to land and/or water ecosystems	Widespread, irraversible damage to land and/or water ecosystems.		
9		 No noticeable species reduction 	OR	OR	OR	OR		
88		 Occasional inconsistency with the intent of legislation, Auckland Plan 	Localised minor reversible damage to land and/or water ecosystems.	Moderate reduction in one or more species	Significant reduction in one or more species	Permanent loss of one or more species.		
7			OR	OR	OR:	OR		
			Temporary reduction in one species	Moderate erosion and/or damage to property.	Severe erosion and/or damage to property.	Destruction of property / widespread flooding.		
			QR	Recovery time 1 month.	Recovery time up to 6 months	Recovery time exceeding 6 months.		
			Minor erosion and/or damage to property.	OR	OR Repeated and significant inconsistency with the intent of legislation,	OR .		
			OR	Repeated inconsistency with the intent of legislation, Auckland Plan.	Auckland Plan.	No recognition of the intent of legislation, Auckland Plan.		
	1		Minur inconsistency with the intent of legislation, Auckland Plan.					
		Economic loss <\$0.5M	Economic loss 0.5M-\$1M	Economic loss \$1M-\$10M	Economic loss \$10M-\$100M	- 99		
		OR .	OR	OR	OR .	Economic loss >\$100M		
	Assets and Economy	Damage / loss of a minor asset worth <\$5k	asset damage <\$10K OR	asset damage <\$50k. OR	asset damage <\$500k OR	OR asset damage >\$1M		
		Assets not useable / available for short defined period	assets not usuable / available for short	assets not useable / available for the medium term	Assets not useable / available for the long term	OR		
		Assets not useable / available for short delined period	undefined period	assets not useable / available for the involution sorti	Assets not useable - available for the long sent	Total loss of asset that cannot be replaced		
	5	Medium	High	Very High	Estreme	Editor		
	Almost Certain	5	10	15	26	25		
	(greater than 90% chance of occurring during period of exposure)	***	**	29				
	4	Low	Medium	High	Very High	Eitens		
	Event Likely to Occur	4		12	16	38		
2	(50% to 90% chance of occurring during period of exposure)	54.7 S		""				
ğ	3	Low	Medium	Medium	High	Very High:		
MELE	Event May Occur (25% to 50% chance of occurring during period of exposure)	3	•	•	12	15		
_	2	Very Low	Low	Medium	Medium	High		
	Event Unlikely to Occur (10% to 25% chance of occurring during period of exposure)	2			1	10		
	1	Very Low	Very Low	Low	Low	Medium		
	Event Rarely Occurs (less than 10% chance of occurring during period of exposure)	*	2	3	4	5		

Figure 14: Geohazard Zone Plan

8 SITE CONSTRAINTS

A number of watercourses exist within the subject area. Classification of the watercourses is outside CMW's scope and is being undertaken by others.

Should any of these watercourses need to be retained, geotechnical remediation measures such as (for example) undercuts, shear keys and / or retaining walls may be required to stabilise adjacent land, depending on the location of the watercourse and the proposed landform. It can be assumed that any filling will have underfill drainage placed beneath it to allow the flow of water to continue through the watercourse and to prevent the build-up of groundwater pressures from developing beneath the fill.

Geotechnical remediation measures will be developed fully at the detailed design stage which will occur at the time of Resource Consent application.

9 CONCLUSION

On the basis of our hazard assessment, we consider that the land is suitable for creating stable building platforms and infrastructure, having normally acceptable levels of post-development residual risk from natural hazards. Any proposed earthworks are to be undertaken in accordance with all relevant standards and documents. The engineering controls required to control existing, latent risks are commonplace works in this terrain that are consistent with those being adopted on nearby land. Further site investigation and design will need to be undertaken to quantify the geotechnical controls prior to the commencement of any works.

10 CLOSURE

This report has been prepared for use by Fisher & Paykel Healthcare Properties Limited in relation to the Karaka Road, Drury West project in accordance with the scope, proposed uses and limitations described in the report. Should you have further questions relating to the use of your report please do not hesitate to contact us.

Where a party other than Fisher & Paykel Healthcare Properties Limited seeks to rely upon or otherwise use this report, the consent of CMW should be sought prior to any such use. CMW can then advise whether the report and its contents are suitable for the intended use by the other party.

Additional important information regarding the use of your CMW report is provided in the 'Using your CMW Report document attached to this report.

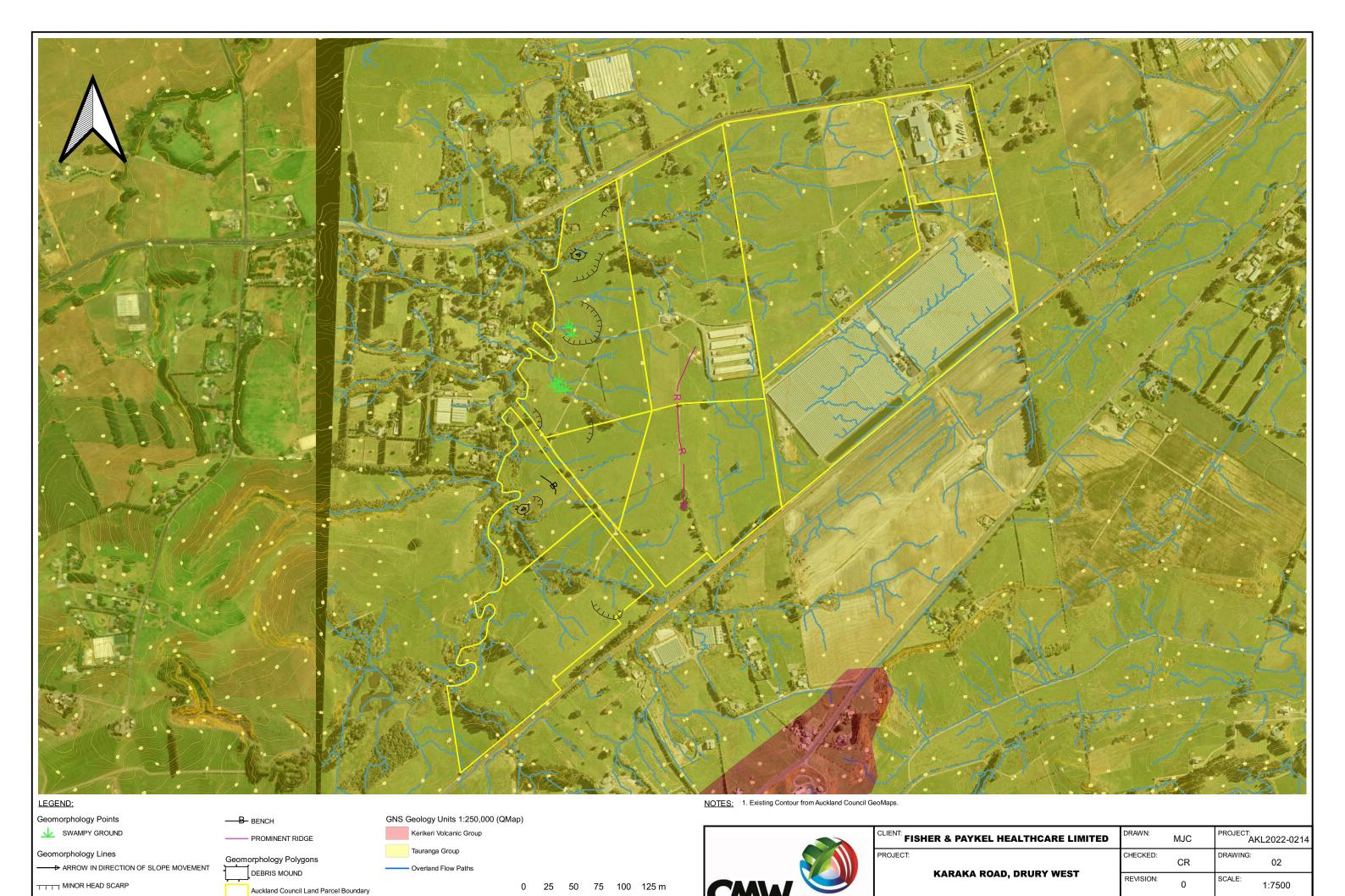
REFERENCES

Edbrooke, S. W. (compiler) 2001: Geology of the Auckland area. Institute of Geological & Nuclear Sciences 1:250 000 geological map 3. 1 sheet +74 p. Lower Hutt, New Zealand. Institute of Geological & Nuclear Sciences.

Schofield, J. C. 1989: Sheets Q10 & R10 – Helensville and Whangaparaoa. Geological map of New Zealand 1:50 000. Map (2 sheets) and notes. Wellington, New Zealand. Department of Scientific and Industrial

Appendix A: CMW DRAWINGS

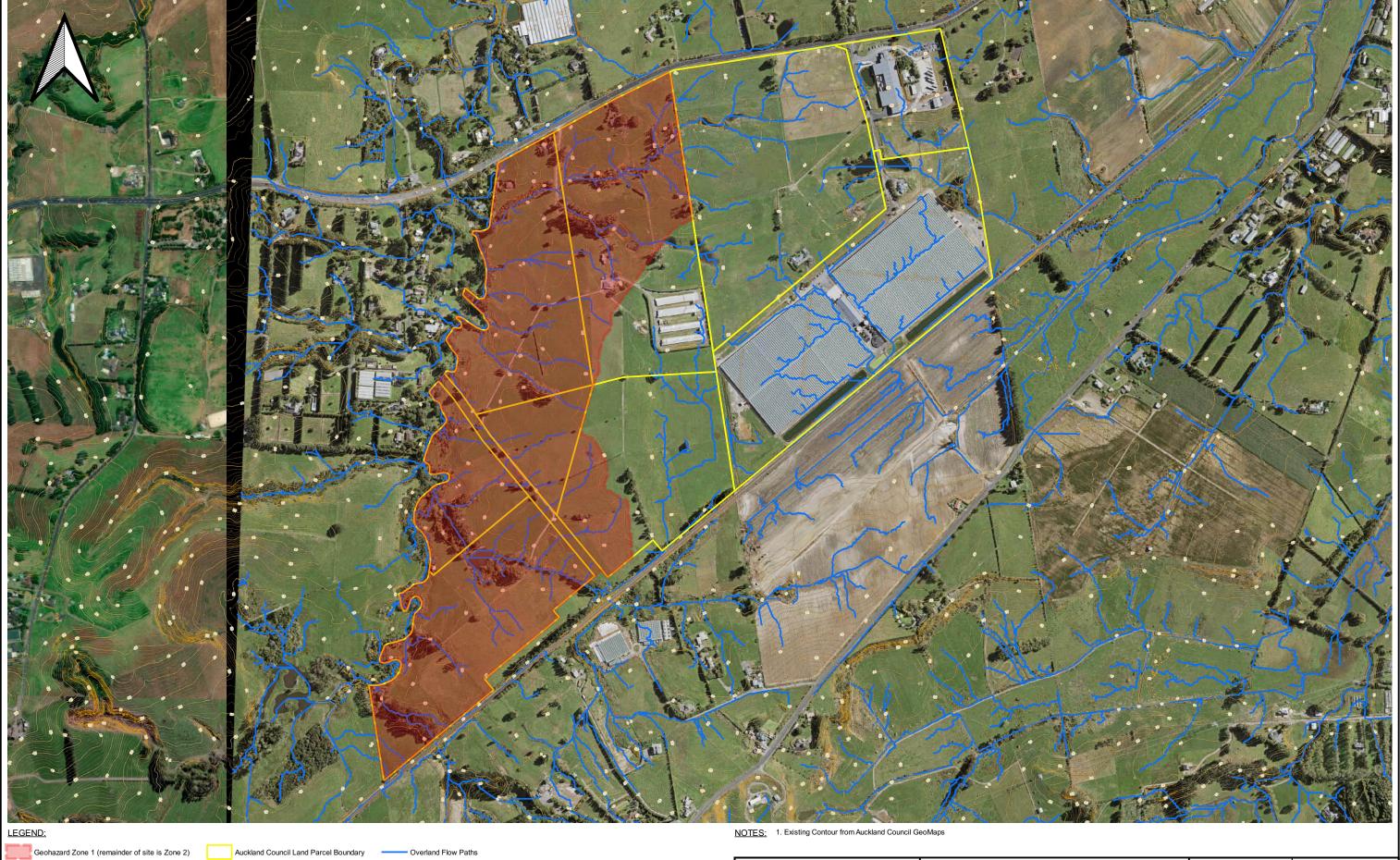
Site Investigation Plan Geology & Geomorphology Plan Geohazard Zone Plan



Hand Auger

Overland Flow Paths

CLIENT:	FISHER & PAYKEL HEALTHCARE LTD	DRAWN:	MJC	PROJECT:	KL2022-0214
PROJEC	T: KARAKA ROAD	CHECKED:	CR	DRAWING:	01
	DRURY WEST		0	SCALE:	1:7500
TITLE:	SITE INVESTIGATION PLAN	DATE:	24/02/2023	SHEET:	A3 L



SHEET:

A3 L

24/02/2023

GEOLOGY AND GEOMORPHOLOGY PLAN

50 100 150 200 250 m

CMW Geosciences

	CLIENT: FISHER & PAYKEL HEALTHCARE LIMITED	DRAWN:	MJC	PROJECT:	KL2022-0214
		CHECKED:	CR	DRAWING:	03
	KARAKA ROAD, DRURY WEST		0	SCALE:	1:7500
,	TITLE: GEOHAZARD ZONE PLAN	DATE:	24/02/2023	SHEET:	A3 L

PORT AKS2022-0029AB

13 July 2022 Document Ref: AKS2022-0029AB Rev. 0

Dines Group Limited 22 Bowden Road, Mount Wellington, Auckland 1060

Attention: Colin Botica

RE: GEOTECHNICAL ASSESSMENT REPORT 350 & 370 KARAKA ROAD, DRURY

1 INTRODUCTION

1.1 Project Brief

CMW Geosciences (CMW) was engaged by Dines Group Limited to carry out a geotechnical assessment of 350 & 370 Karaka Road in Drury which we understand are both currently zoned under the Auckland Unitary Plan as a "Future Urban Zone". At this stage, no concept plans are available, but it is our understanding that the sites may be developed for commercial / industrial subdivision with the possibility of mixed use.

The scope of work and associated terms and conditions of our engagement were detailed in our services proposal letter referenced AKS2021-0073AB Rev 0, dated 04 August 2021.

This report is intended to support a feasibility study and we outline our findings from our preliminary investigations as described herein. This report may be used to supplement future geotechnical assessment of land modification and future commercial / industrial development but will likely require further investigations and geotechnical analyses.

1.2 Scope of Work

As detailed in our services proposal letter referenced above, the agreed of scope of work is defined as follows:

- Desktop study of available information relevant to the proposed development.
- Arrange and execute a geotechnical investigation comprising:
 - > 10 no. hand augered (HA) boreholes to a maximum depth of 5m; and
 - One day of CPT investigation to depths of 20m.
- Preparation of a Geotechnical Assessment Report outlining our findings, anticipated geotechnical hazards and preliminary comments with regards to suitability of the sites for future commercial/industrial or residential subdivision.

2 SITE DESCRIPTION

2.1 Site Location

The sites are legally described as Lot 1 DP 205837, Lot 4 DP 14876, Pt lot 6 DP 14876 and identified as #350) and #370 Karaka Road respectively. Combined, the sites encompass an area of approximately 47.2Ha.

Figure 1: Site Location (Auckland Council GIS)

2.2 Landform

As seen in *Figure 2* below, the landform typically comprises very gently to gently sloping farmland, falling from the east towards the west. There are several natural drainage depressions comprising defined, tree-lined gullies as well as relatively shallow basins, some of which have been modified with the formation of farm ponds. We describe the landform as well as site features in more detail in the following sections.

Figure 2: Aerial Photo (2017) of the site with 2.0m contours (Auckland Council GIS).

2.2.1 350 Karaka Road

The landform falls from highpoints along the eastern boundary line around ~RL33.0 down to the current boundary between #350/#370 where the ground levels range around RL25.0 to RL20.0. There are three distinctive pond areas:

- Large pond depression in the south-eastern corner which extends across the neighbouring boundary
 to the east albeit intersected by a neighbouring driveway which we presume uses a culvert pipe under
 the driveway (see Figure 3 below);
- Also note what appear to be sand dredging works;

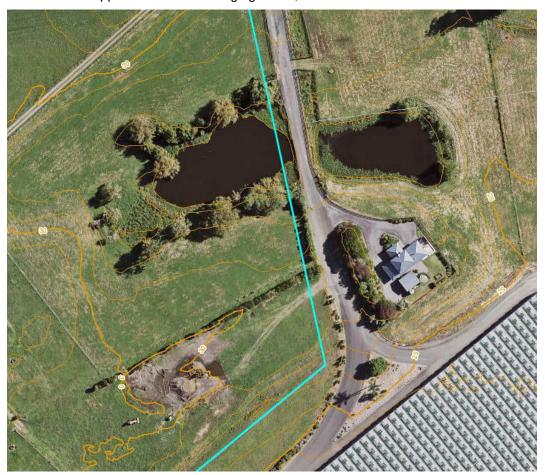


Figure 3: Pond in south-east corner of #350. Note the topsoil stockpile works. (2017 Aerial Photo with 1.0m contours from Auckland Council GIS).

 Relatively shallow incised gully in the north-west corner which has been dammed in two locations forming two ponds (see Figure 4 below);

Figure 4: Gully ponds in north-west corner of #350. Note the two dam banks (2017 Aerial Photo with 1.0m contours from Auckland Council GIS).

 Relatively shallow but broad depression in the south-west corner which has a large pond which extends across into #370 (see Figure 5 below).

Figure 5: Gully ponds in north-west corner of #350. Note the house accessed from the neighbouring property to the south (2017 Aerial Photo with 1.0m contours from Auckland Council GIS).

2.2.2 370 Karaka Road

The landform comprises three distinctly contrasting topographies with the northern-third dominated by two gullies; the central-third comprising a highpoint; and the southern-third a broad near-level depression to the east and rolling slopes to the west:

- The north-third contains a main gully which is tree-lined and comprising moderate to steep-sided banks along with a small pond formed by a dam crossing (see Figure 6 below);
- A second tree-lined gully with two larger ponded dams;
- Ground levels range between ~RL20.0 to ~RL10.0;

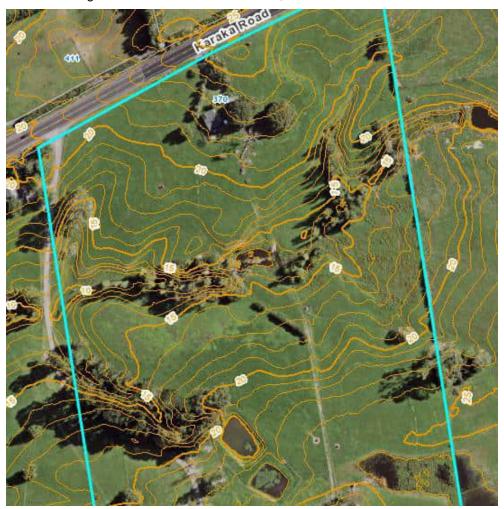


Figure 6: Tree-lined gullies with ponds in north-third of #370. Note the house to the north accessed from Karaka Road with a second house to the south accessed from three different accessways and neighbouring properties (2017 Aerial Photo with 1.0m contours from Auckland Council GIS).

- Elevated central-third of #370 where four large farm sheds and adjacent dwelling are situated (see Figure 7 below);
- Ground levels range between ~RL25.0 to ~RL30.0;

Figure 7: Elevated central-third with four large farm sheds and adjacent dwelling (2017 Aerial Photo with 1.0m contours from Auckland Council GIS).

 Southern-third of #370 comprises a broad, near-level depression to the east (~RL21.0) and rolling slopes either side of ridgeline to the west ranging ~RL28.0 to ~RL18.0 (see Figure 8 below);

Figure 8: Southern-third of #370 with broad near-level depression to the east and rolling slopes either side of a ridgeline to the west (2017 Aerial Photo with 1.0m contours from Auckland Council GIS).

3 PROPOSED DEVELOPMENT

We understand that both 350 & 370 Karaka Road are currently zoned under the Auckland Unitary Plan as a "Future Urban Zone". At this stage, no concept plans are available, but it is our understanding that the sites may be developed for commercial / industrial subdivision with the possibility of mixed use.

Given that there are currently no earthworks proposals, we have made the following broad-brush assumptions (not be construed as limitations) so that we provide commentary around the geotechnical suitability (or not) of the land in terms of land modification:

- Bulk earthworks comprising cuts and fills not exceeding 2.0m depth: and
- Future site development for commercial and medium-industrial buildings with Uniformly Distributed Floor Loadings of up to 30 kPa.

4 INVESTIGATION SCOPE

4.1 Desktop Study

Prior to the site investigation, a desktop review was undertaken of available geotechnical information, including Auckland Council GIS database "Geomaps" and Retrolens historic aerial photography, as well as publicly available information from the NZ Geotechnical Database. A Dial Before You Dig online service search was also undertaken.

4.1.1 Historical Aerial Photograph Review

Review of historic aerial photographs indicate that the site was undeveloped in May 1942 (Figure 9 below, earliest available aerial), with only minor dwellings visible in the northern portion of #370. Note the "humps and hollows" across the landform which we believe are ancient erosional terrace features compared with the more recent gully erosion features which are evident as much sharper and localised features.

Figure 9: 1942 historical aerial photo (Retrolens).

By 1996, (see Figure 10 below), we can see four large, rectangular farm buildings as well as a farmhouse constructed centrally within #370 along with several ponds. Note the large man-made pond now evident along the eastern boundary of #350.

Figure 10: 1996 historical aerial photo (Retrolens).

By 2001 (see Figure 11 below), the significantly large glasshouses on the neighbouring property to the south-east were constructed with evidence of a large stockpile of topsoil extending across onto #350. The farmhouses on #350 are also evident.

Figure 11: 2001 historical aerial photo (Retrolens).

By 2006 (see Figure 12 below), there are stockpiles evident to the south of the northern-gully in #350 whilst there are earthworks evident along the southern boundary of #350. No works are evident in #370.

Figure 12: 2006 historical aerial photo (Retrolens).

The 2017 aerial photos (see section 2.2 Landform above) show the construction of the remaining ponds occurred sometime after 2006 but prior to 2017.

In summary, based on the intermittent historical aerial photographs we have reviewed, there appears to have been several episodes of land modification, which although localised to specific areas of the sites, suggests that the southern boundary area of #350 was used to stockpile material when the neighbouring glass houses were built. There are also areas around the gully depressions, in particular where the man-made ponds are formed, which could comprise disturbed ground.

4.2 Field Investigation

Following a Dial Before You Dig online search, and onsite buried service detection, the field investigation was carried out between 31th March 2022 and 14th April 2022. All fieldwork was carried out under the direction of CMW Geosciences in general accordance with the NZGS specifications¹ and logged in accordance with NZGS guidance².

The scope of fieldwork completed was as follows:

- Undertook a walkover survey of the site to assess the general landform, site conditions and adjacent structures / infrastructure;
- An on-site services search was carried out by a specialist contractor to identify the presence of any underground obstructions or hazards prior to the field investigation program commencing;
- 10 no. hand auger boreholes, denoted HA01-22 to HA10-22, were drilled using a 50mm diameter auger to a target depth of 5.0m below existing ground levels to visually observe the near surface soil profile and to facilitate vane shear strength testing. Engineering logs of the hand auger boreholes, together with peak and remoulded vane shear strengths are presented in Appendix B.
- 4 (no.) Cone Penetrometer Tests (CPT) were undertaken across #370 as we did not have approved access for the CPT rig across #350 locations denoted CPT02-22, CPT04-22 to CPT06-22, were pushed to depths of up to 20m to define the ground model through the proposed excavation depth and through the underlying zone of influence of fills as well as future building foundations. Results of the CPT's, presented as traces of tip resistance (q_c), friction resistance (f_s) and friction ratio are presented in Appendix C.

The approximate locations of the respective investigation sites referred to above are shown on the Site Investigation Plan included in Appendix A. Test locations were measured using hand-held GPS and elevations were inferred from the AC GIS database.

5 **GROUND MODEL**

5.1 Published Geology

An extract from published geological maps³ for the area, presented in **Figure 13**, depicts the regional geology as comprising Late Pliocene to Middle Pleistocene pumiceous alluvial deposits of the Puketoka Formation (Pup). These deposits are described as undifferentiated deposits of clays, silts and sands, with lenses of peaty or organic clays. Soils within this geology can be variable in strength and sensitive to disturbance, especially where pumiceous silts and sands are encountered.

The published geological maps for the area also indicate to the south of the site is mapped volcanic deposits from the South Auckland Volcanic Field, consisting of lithic tuff, comprising comminated pre-volcanic materials with basaltic fragments, and unconsolidated ash and lapilli deposits.

Based on the known history of the site as farmland, some superficial depths of fill could be anticipated as a result of soft landscaping to create building platforms, farm tracks and ponds.

Pockets of recent alluvial material can also be expected around gully features and other overland flow paths.

The nearest active fault is the Drury Fault which is approximately 5km east of the site.

¹ NZ Geotechnical Society (2017) NZ Ground Investigation Specification, Volume 1 – Master Specification

² NZ Geotechnical Society (2005), Field Description of Soil and Rock, Guideline for the field classification and description of soil and rock for engineering purposes.

³ Edbrooke, S.W. (compiler) 2001: Geology of the Auckland area: scale 1:250,000. Lower Hutt: Institute of Geological & Nuclear Sciences Limited. Institute of Geological & Nuclear Sciences 1:250,000 geological map 3. 74 p. + 1 folded map

Figure 13: Regional Geology (GNS Science Geology Web App)

5.2 Stratigraphic Units

The ground conditions encountered and inferred from the investigation were considered to consistent with the published geology for the area and can be generalised according to the following subsurface sequences.

5.2.1 **Topsoil**

Topsoil was typically encountered across both #350 & #370 to depths of between 0.2 metres below ground level (mbgl) up to 0.3mbgl. At HA02, topsoil was encountered to 0.9mbgl of topsoil which we believe was around the location of the old topsoil stockpile identified in our historic aerial photograph review.

5.2.2 Fill

There was no obvious evidence of man-made fill encountered in our hand augered boreholes.

However, on the basis of our aerial photograph review, we expect there to be several areas of fill deposits / disturbed ground; in particular in and around the existing farm tracks, ponds and building platforms.

Furthermore, due to the historic farm-use of the site, there is potential for more widespread areas of uncertified / non-engineered fill used for historic land modification purposes across the site.

For this reason, we stress the need for thorough site stripping inspections prior to the placement of any filling during earthworks construction, with any non-engineered filling identified and removed to the satisfaction of the supervising Geo-Professional.

Depending on the quality and consistency of the material, it may be suitable for re-use as bulk filling.

5.2.3 **Recent / Holocene Alluvial Material**

Although we did not directly identify recent alluvial deposits in our hand augered boreholes, we expect such localised deposits of soft organics & alluvial sediments within the gullies and ponds present across both sites. Where encountered, these unsuitable soils will need to be mucked out and subsoil drainage installed before any bulk filling is undertaken.

CPT02 was positioned in the middle of what we believe was an old pond which was not holding water at the time of investigation. Never-the-less, it is inferred that soft to firm soils extend up to 2.0m depth in this location. Below this depth the materials were consistently stiff to very stiff becoming hard below 17 metres depth.

CMW Geosciences

5.2.4 South Auckland Volcanic Field Materials

#350

Competent surficial volcanic ash soil to depths ranging between 1.2mbgl to 3.0mbgl. This material typically consisted of very stiff to hard, clayey silt and silty clay with peak undrained shear strengths measuring >134kPa.

#370

Across the majority of the site, competent surficial volcanic ash soil to depths ranging between 1.2mbgl to 2.2mbgl in HA06 to HA08 & HA10. This material typically consisted of stiff to hard, clayey silt and silty clay with peak undrained shear strengths measuring >81kPa.

5.2.5 Puketoka Formation

We encountered Puketoka Formation alluvial soils underlying the volcanic soils to our target depths of 5.0m. Although these materials were generally lower in strength and more variable in terms of consistency when compared with the overlying volcanics, these materials were still competent in general terms with no obvious evidence of weak and/or compressible materials.

This material typically consisted of generally stiff to hard, inorganic silty clay and sandy silt with peak undrained shear strengths measuring >75kPa.

The inferred material strengths in the CPT tests confirmed the Puketoka formation soils are generally stiff to very stiff with no obvious layers of weak / compressible materials at depth with refusal on hard / dense materials around 17.5mbgl to 20mbgl.

5.2.5.1 Peat / Organic Mud and Soft/Firm Soils

In HA09, which was drilled in the low-lying area in the south-east corner of #370, we encountered peat from the ground surface to a depth of 1.0mbgl in turn overlying soft to firm "mud" comprising organic clays to a depth of 3.2m with undrained shear strengths measured as low as 29kPa. Below 3.2mbgl depth, the material strength increased to >78kPa with no obvious evidence of organic soils.

It should be cautioned that elsewhere in this low-lying area the peat may be thicker/ extend deeper. Based on CPT5, inferred soft to firm material was encountered between 1.0mbgl to 2.5mbgl.

CMW Geosciences 13

Ref: AKS2022-0029AB Rev 0

5.3 Groundwater

A summary of the hand auger boreholes and groundwater occurrences is provided in *Table 1* below.

Table 1: Summary of hand auger boreholes									
Hand auger number	RL m	Target Depth (m below ground)	Termination Depth (m below ground)	Reason for	Groundwater depth				
				Termination	m below ground	RL m			
HA01-22	32.0	5	5	Target Depth	Not Encountered	N/A			
HA02-22	29.0	5	5	Target Depth	Not Encountered	N/A			
HA03-22	27.5	5	5	Target Depth	Not Encountered	N/A			
HA04-22	21.9	5	5	Target Depth	Not Encountered	N/A			
HA05-22	25.8	5	5	Target Depth	Not Encountered	N/A			
HA06-22	24.0	5	5	Target Depth	4.8	19.2			
HA07-22	17.5	5	5	Target Depth	4.8	12.7			
HA08-22	25.0	5	5	Target Depth	4.8	19.2			
HA09-22	22.0	5	5	Target Depth	1.0	21.0			
HA10-22	19.0	5	5	Target Depth	3.0	16.0			

During the investigation, which was completed in autumn conditions (April 2022), no groundwater was encountered in the five hand augers drilled to 5mbgl across #350.

In the five hand augers drilled across, groundwater was encountered at depths of around 4.8mbgl in HA06 to HA08, in the northern half of #370. In the lower-lying area to the south-east of #370 we encountered shallow groundwater at a depth of 1.0mbgl existing ground levels and in HA10 at the very southern end of #370, ground water was encountered at 3.0mbgl depth.

CMW Geosciences 14

Ref: AKS2022-0029AB Rev 0

PRINCIPAL GEOHAZARDS AND PRELIMINARY RECOMMENDATIONS 6

6.1 General

On the basis of our preliminary geotechnical assessment as described in herein, we can confirm that we have considered both foundation and land stability risks and we generally consider that the site should not be exposed to unsatisfactory Geotechnical risk, subject to:

- the comments and recommendations made below; as well as
- the design and construction of appropriate bulk earthworks in conjunction with Geotechnical Review which will likely require additional investigation and analyses.

Furthermore, section 106 of the Resource Management Act (RMA) requires an assessment of the risk from natural hazards to be carried out when considering the granting of a subdivision consent. S106 RMA specifically states that the assessment must consider the combined effect of the natural hazard likelihood and material damage to land or structures (consequence). A Natural Hazards Risk Assessment will therefore need to be undertaken at the time of formal geotechnical reporting prior to Resource Consent submission.

The following sections of this report provide an assessment of the geohazards relevant to this site.

6.2 Seismic Site Subsoil Category

We consider that the site subsoils are likely to be Class C (Shallow soils) in accordance with the definition in NZS1170.5, on the basis that:

- The materials are not Class A, Class B or Class E; and
- The depth of soft soils does not exceed 20 metres:
- The depth of firm soils does not exceed 25 metres; and
- The depth of stiff soils does not exceed 40 metres.

Seismicity 6.3

A seismic assessment has been carried out in general accordance with NZGS guidance4 to calculate the peak horizontal ground acceleration or PGA (a_{max}) as follows:

$$a_{max} = C_{0,1000} \frac{R}{1.3} x f x g$$

Where: $C_{0.1000}$ = unweighted PGA coefficient (0.15 for Auckland, Class C)

R = return period factor given in NZS1170.5, Table 3.5

f = site response factor subject to subsoil class (1.33 for Class C)

g = acceleration due to gravity

The ULS PGA was calculated based on a 50-year design life in accordance with the New Zealand Building Code⁵ and importance level (IL) 2 structures (i.e. we have assumed that future buildings will have a gross floor area less than 10,000m² and less than 300 people can congregate within future buildings).

The PGA for an ultimate limit state (ULS) earthquake scenario is as follows:

CMW Geosciences Ref: AKS2022-0029AB Rev 0

⁴ NZ Geotechnical Society publication "Earthquake geotechnical engineering practice, Module 1: Overview of the standards", Nov 2021) ⁵ Ministry of Business, Innovation and Employment (1992) NZ Building Code Handbook, Third Edition, Amendment 13 (effective from 14

February 2014)

Table 2: Design Peak Ground Acceleration (PGA) for Various Limit States							
Limit State	AEP	R	PGA(g)	Magnitude _{eff}			
ULS (IL2)	1/500	1.0	0.19	6.5			

Note: SLS = serviceability limit state; ULS = ultimate limit state; AEP = annual exceedance probability

6.4 Fault Rupture

The nearest recognised active fault is the Wairoa North and South Faults which are approximately 15km east of the site. These faults have undocumented slip rates and occurrences and given the reasonably significant separation distance from the site, the risk of fault rupture is considered to be low.

6.5 Liquefaction and Lateral Spreading

6.5.1 General

Soil liquefaction is a process where typically saturated, granular soils develop excess pore water pressures during cyclic (earthquake) loading that exceed the effective stress of the soil. In loose soils, some dilation can occur during this process, which can lead to individual soil grains moving into suspension. Following the onset of liquefaction, the shear strength and stiffness of the liquefied soil is effectively lost causing excessive differential settlement of the ground surface, bearing capacity failure and collapse of structures and low-angle lateral spreading of slopes in liquefiable soils.

In accordance with NZGS guidance⁶ the liquefaction susceptibility of the soils at this site has been considered with respect to geological age, soil fabric and soil consistency / density.

6.5.2 Geological Age

Case history data compiled in empirical charts for liquefaction evaluation, shows that the vast majority of liquefaction events are triggered in geologically young and relatively unconsolidated deposits such as Holocene age alluvium or man-made fills^{7,8}. On the basis of our investigations as described herein, we have not encountered any widespread evidence of Holocene deposits nor any significant deposits of man-made fills. Where either of these recent deposits are encountered, they will be undercut and removed thereby removing the risk either by static fill and/or building loading or liquefaction induced settlement.

It is generally considered that Pleistocene aged alluvium (>12,000 years before present) has a very low to low risk of liquefaction⁹

Stratigraphic units encountered beneath the site during our investigations comprise:

- Puketoka Formation alluvial deposits, which are dated no earlier than 70,000 years and up to 3.6 million years before present; and
- South Auckland Volcanic deposits, which are dated no earlier than 510,000 years and up to 1.59 million years before present.

Notwithstanding this, age alone is often debated as being of insufficient evidence to discount liquefaction potential due to its qualitative nature. Consideration can therefore be given to applying an ageing factor (K_{DR})

⁶ Earthquake Geotechnical Engineering Practice, Module 3: Identification, assessment and mitigation of liquefaction hazards", (Nov 2021)

⁷ Seed, H.B. and Idriss, I.M. (1971) A simplified procedure for evaluating soil liquefaction potential, Earthquake Engineering Research Centre, Report No. EERC 70-9, University of California

⁸ Youd, T.L. and Perkins, D.M. (1978) Mapping liquefaction-induced ground failure potential, *Journal of the Geotechnical Engineering Division*, ASCE, Vol. 104, No. GT4, Proc Paper 13659, p. 433-446

⁹ Saftner, D.A.; Green, R.A.; Hryciw, R.D. (2015). Use of explosives to investigate liquefaction resistance of aged sand deposits, *Engineering Geology*, Vol 199, p.140-147.

to site specific liquefaction analyses in accordance with methods presented in Saftner et al¹⁰ and represented in *Figure 14* below:

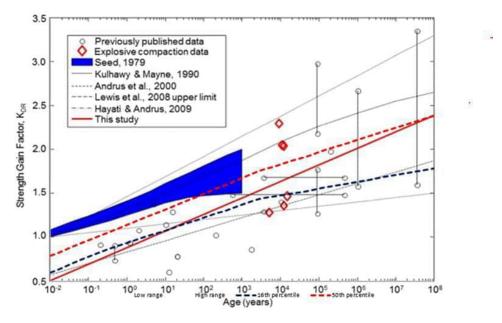


Figure 14: Ageing factors as presented in Saftner et al with 16th and 50th percentiles

From the range of the age factors presented in Figure 14 a conservatively low estimate was adopted to determine a minimum KDR=1.3 for both the South Auckland Volcanic materials and Puketoka Formation deposits.

6.5.3 Soil Fabric

Soils are also classified with respect to their grain size and plasticity to assess liquefaction susceptibility. Based on more recent case histories, there is general agreement that sands, non-plastic silts, gravels and their mixtures form soils that are susceptible to liquefaction. Clays, although they may significantly soften under cyclic loading, do not exhibit liquefaction features, and therefore are not considered liquefiable. NZGS guidance⁵ sets out the plasticity index (PI) criteria for liquefaction susceptibility as follows:

PI < 7: Susceptible to Liquefaction

7 ≤ PI ≥ 12: Potentially Susceptible to Liquefaction

PI ≥ 12: Not Susceptible to Liquefaction

The fines content of the sands beneath the site also has a significant impact on their liquefaction susceptibility. Specific plasticity index laboratory test results were not undertaken for this site for the following reasons:

- The upper soil horizon of South Auckland Volcanics and Puketoka Formation soils comprises stiff to hard cohesive clays and silts with high plasticity from visual/tactile tests and therefore considered to have low susceptibility to liquefaction.
- The sandy SILTs within the underlying Puketoka Formation, in combination with presence of elevated groundwater levels, suggest that there may be some susceptibility to liquefaction.

6.5.4 Specific Analyses

Analyses were undertaken using the raw data from the CPT tests which were first filtered through the software package CPe-IT¹¹ and then analysed using the accompanying software package CLiq¹². The liquefaction

_

¹⁰ Saftner, D.A.; Green, R.A.; Hryciw, R.D. (2015). Use of explosives to investigate liquefaction resistance of aged sand deposits, *Engineering Geology*, Vol 199, p.140-147.

¹¹ CPe-IT ver 3.0.2.1 by Geologismiki

¹² CLiq ver 3.3.2.9 by Geologismiki

analyses compared the cyclic stress ratio (CSR), being a function of the earthquake magnitude for the design return period event, to the cyclic resistance ratio (CRR), being a function of the CPT cone resistance (qc) and friction ratio (Rf).

A ground water level of 4.0 mbgl was applied in our analyses for CPT02 and CPT04 to the north and 2.0mbgl for CPT05 and CPT06 to the south.

Results for the ULS liquefaction analyses are summarised as follows:

- Low risk of potential liquefaction (LPI);
- Little to no expression of liquefaction (LSN) for CPT02, CPT04 & CPT05;
- Minor expression of liquefaction (LSN) for CPT06;
- Overall low probability of liquefaction;
- Predicted total vertical settlements of no greater than 50mm across CPT02, CPT04 & CPT05 locations:
- Predicted total vertical settlements of up to 140mm at CPT06 location;
- Predicted lateral stretch/displacement typically no greater than 80mm at CPT02 & CPT04 locations; and
- Predicted lateral stretch/displacement between 200mm to 600mm at CPT05 & CPT06 locations.

On closer inspection of the displacement graphs for these specific locations, we can see that the greatest settlement and lateral displacement magnitudes are occurring at beyond the following depths:

- CPT02 below 13.0mbgl;
- CPT04 below 6.0mbgl;
- CPT05 below 4.5mbgl; and
- CPT06 below 6.5mbgl.

These "reactive" soils are below the depth of non-liquefiable overburden or "crust".

Subject to earthworks modification of the site which doesn't significantly decrease the thickness of "crust" as well as the application of engineered fill to create a thicker "crust" as well as filling in the "free-faces" of the gullies, it is unlikely that liquefaction induced settlement nor lateral stretch should be a significant risk to the future development.

6.6 Cyclic Softening

The fine-grained alluvium, while not liquefiable due to its high plasticity, may be susceptible to some strength loss, referred to as cyclic softening, during a ULS seismic event.

Cyclic softening analyses of those soils was carried out in accordance with Boulanger¹³ and Idriss¹⁴. This correlates earthquake magnitude to the estimated number of equivalent stress cycles (Figure 15) and then correlates number of cycles to a cyclic shear strength ratio (Figure 16).

¹³ Boulanger, R.W. and Idriss. I. M. (2007) Evaluation of Cyclic Softening in Silts and Clays, Journal of Geotechnical and Environmental

Engineering, Vol 133, Issue 6.

14 Idriss, I. M. and Boulanger, R. W. (2008) Soil Liquefaction During Earthquakes. Monograph 12, Earthquake Engineering Research Institute.

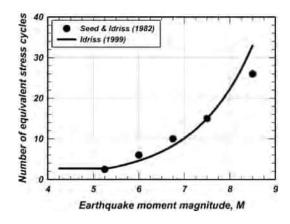


Figure 15: Relationship between earthquake magnitude and mean number of uniform stress cycles

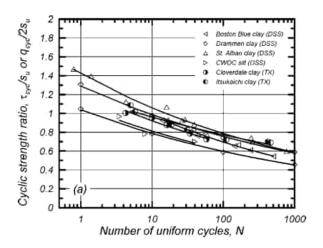


Figure 16: Relationship between cyclic strength ratio and number of uniform stress cycles

Based on the above assessment, 6 stress cycles are estimated during the ULS M6.2 earthquake resulting in a worst-case cyclic shear strength of 85% of the peak shear strength. Reduced shear strengths should be considered for any future slope stability analyses deemed necessary once earthworks proposals have been made available for review which should include the proposed stormwater pond formation.

6.7 Slope Stability

Generally speaking, we consider the majority of the existing slope gradients in and around the subject site are gently sloping and at low risk of instability. The slopes in and around the defined gully margins are however considered to be at risk of soil creep and shallow slump failures. However, subject to these gullies being filled, this risk should be mitigated. If these gully flanks are not supported by bulk filling then slope stability assessment will be necessary.

Although we have not had the benefit of reviewing development proposals, we consider that for bulk earthworks involving cut and / or fill depths greater than 2.0m and / or batter slopes steeper than 1V:3H, stability analyses will likely be required.

6.8 Erosion

Whilst we have not had the benefit of reviewing earthworks proposals, we make the following generalised comments with regards to erosion and mitigation measures:

The existing landform is gently sloping with defined overland flow paths which do not reveal any
obvious evidence of surface erosion.

- Future development and land modification should reduce the risk of overland flows which may cause erosion.
- Localised batter slopes should typically be formed at no steeper than 1V:3H, including the internal and external pond batter slopes, and the surface of the batters must appropriately be stabilised with topsoil, planting of vegetation and stormwater controls via surface water interception and diversion.
- Where any proposed stormwater controls (in the form of swale drains) are proposed, we expect that the swale is lined with geotextile as well as rock riprap to mitigate soil erosion from the surface flow.

6.9 Load Induced Settlement

An assessment of static settlements was completed using the CPT interpretation software CPeT-IT¹⁵.

Given that there are currently no earthworks proposed, we have assumed earthworks filling in the order of 2.0m above existing levels, coupled with future widespread industrial building loads anticipated as being in the order of 30 kPa, there is a greater than normal risk of consolidation occurring in the underlying natural alluvial deposits.

Qualitatively speaking, we consider that the greatest risk of consolidation settlement is predominantly confined to the localised Holocene age deposits. To reduce this risk, we recommend that all weak Holocene age deposits are "mucked-out" in the gullies exposing the Volcanic Ash and Puketoka Formation soils prior to filling.

We summarise preliminary predicted settlements as follows:

- CPT02: 35mm (Primary) and 15mm (Secondary);
- CPT04: 25mm (Primary) and 10mm (Secondary);
- CPT05: 30mm (Primary) and 10mm (Secondary); and
- CPT06: 20mm (Primary) and 5mm (Secondary).

On the basis of these preliminary settlement predictions, consolidation is predicted to be rapid with predominantly elastic settlements occurring which are predicted to be largely "built-out" during the earthworks and civil construction with predicted magnitudes of between 20mm to 35mm should be expected. Long-term post-construction or creep settlements over a design life of 50 years are predicted to be less than 15mm.

Depending on the depth of future proposed cut and fill earthworks, further site investigations as well as settlement analyses may need to be undertaken as part of any future detailed investigation and design. This should allow for the development of appropriate ground remediation options if necessary.

Weak and/or compressible subsoils may be subject to consolidation settlements due to potential loadings from industrial buildings and floor slabs. If any soft materials are discovered during earthworks, it is recommended to undercut them and replace with compacted engineered fill. In addition, general ground improvement methods, including pile foundation, reinforced fill rafts and basal reinforcement may be necessary to mitigate any potential settlement hazards identified.

6.10 Expansive Soils

Seasonal shrinking and swelling results in vertical surface ground movement which can cause significant cracking of floor slabs and walls. There have been instances of concrete floors and/ or foundations that have been poured on dry, desiccated subgrades in summer months on expansive soils and have undergone heaving and cracking requiring extensive repairs or re-building once the soil moisture contents have returned to higher levels. This hazard is addressed by a combination of careful foundation design and site preparation.

Although no laboratory expansive soil testing was conducted as part of this report, based on our experience and visual/ tactile assessment of the materials on-site, we recommend assuming a preliminary expansive class of H1 to H2. This should be assessed by laboratory testing once development proposals have been confirmed.

_

¹⁵ CPeT-IT ver 3.0.2.1 by Geologismiki

6.11 Sensitive Soils

We caution that both the surface volcanic ash soils and the underlying Puketoka Formation soils can be prone to strength loss/sensitivity to disturbance once bulk excavated. Filling can be difficult and requires additional conditioning when compared with more plastic clays. Allowance should be made for conditioning, re-working and possibly lime/cement stabilisation. We recommend laboratory testing is undertaken including soil limits and compaction curve testing once development proposals have been confirmed.

6.12 Earthworks

All earthworks should be undertaken in accordance with the following standards:

- NZS4431:1989 "Code of Practice for Earth Fill for Residential Development" and
- Section 2 "Earthworks & Geotechnical Requirements" of NZS4404:2010 "Land Development and Subdivision Infrastructure" and
- Section 2 "Earthworks and Geotechnical Requirements" of the Auckland Council Code of Practice for Land Development & Subdivision (Version 1.6 dated 24 September 2013).

We stress that all works should be undertaken in a careful and safe manner so that Health & Safety is not compromised, and that suitable Erosion & Sediment control measures are put in place. Any stockpiles placed should be constructed in an appropriate manner so that land stability and/or adjacent structures are not compromised.

It is anticipated South Auckland Volcanic, and Puketoka Formation soils will be won on-site from cut areas and re-used as fill across the more depressed site areas.

Given the stiffness, density and fabric of the soil units generally encountered in our investigation, it is expected that excavation of these materials will be readily achieved with conventional earthworks plant.

Whilst the proposed cut and fill depths are not yet confirmed, we consider that for the most part, the materials encountered within our investigation boreholes up to 2.0mbgl, should not present too many challenges during construction.

We caution that, depending on the time of year, the deeper soils may contain high moisture contents, along with more silty and possibly sandy soils, which can be sensitive to disturbance, and can make them particularly challenging to earthwork. These materials can be used within engineered fills although they may require block cutting and top loading techniques.

Where these materials are encountered, the amount of drying, blending and compaction effort required should not be underestimated.

Furthermore, contractors involved in any earthworks should be made aware of their presence. Sensitive soils can be difficult to work as they are prone to significant strength loss when disturbed and accordingly, careful site management is required.

Although widespread historic filling was not encountered in our hand auger boreholes across the site, due to historic land use there is potential that areas of uncontrolled fill will be encountered during earthworks construction. In particular around the man-made ponds, farm tracks and existing building platforms as well as the southern boundary of #350.

Underfill drains will need to be installed beneath new fills within low lying tributaries and gully inverts. Once a proposed cut fill earthworks plan is finalised, we can provide recommended locations for underfill drains.

Allowance must be made to remove and undercut soft materials before installation of underfill drainage,

6.13 Stormwater Soakage

Given that the sites soils are predominantly clayey in nature, coefficients of permeability are considered to be low. Accordingly, rain gardens / attenuation ponds are not expected to provide any significant ground soakage function.

CMW Geosciences 21

Ref: AKS2022-0029AB Rev 0

22

If raingardens are required, then the design and placement of such structures must be reviewed by the geotechnical engineer to ensure that the details are appropriate for each location.

7 FUTURE FOUNDATIONS & DEVELOPMENT

Once the subdivisional works have been completed, a Geotechnical Completion Report (GCR) should be prepared confirming the earthworks have been completed satisfactorily with any geotechnical limitations expressed in terms of future site development. In addition, the GCR should provide geotechnical design recommendations for the development of future commercial / industrial buildings.

On this site our provisional expectation is that provided earthworks are completed in accordance with the standards and recommendations described herein, the following will apply:

7.1 Preliminary Foundation Recommendation

We consider that at this preliminary stage, for the areas of the site where filling is undertaken above existing ground level or where excavations of no more than 2.0mbgl are undertaken, a Geotechnical Ultimate Bearing Capacity (GUBC) of 300 kPa should be appropriate for shallow foundations design.

However, there is a risk that bulk excavations may expose sensitive soils, either at the surface or within the influence of shallow foundations and the GUBC may need to be lowered accordingly unless remedial works are undertaken to reinstate a competent foundation subgrade.

7.2 Expansive Soils

On the basis of our visual tactile assessment, results of laboratory testing and reference to BRANZ Report SR120A, we have provisionally assessed the AS2870 Site Class for the development to range between Class H1(Highly) to Class H2 (Highly subclass 2).

Mitigation of the expansive soil hazard is undertaken by a combination of appropriate foundation design selection at Building Consent stage and appropriate moisture control within subgrade soils during construction. Usual solutions to mitigate these risks include (but are not limited to):

- specifically designed or proprietary stiffened foundation systems.
- deepening and/or piling of foundations.
- undercutting and replacing reactive soil subgrade with non-reactive hardfill; and/or
- controls on planting of certain tree species close to buildings.

Foundation contractors must also be aware of this issue and the need to maintain appropriate moisture contents in the footings and building platform subgrade between the time of excavation and pouring concrete. Remedial actions that may be appropriate include platform protection with a hard fill layer, pouring of a blinding layer of concrete in footing bases and soaking of the building platform with sprinklers for an extended period.

The resulting effects of possible shrinkage and swelling in relation to brittle building construction should be considered at the time of preparation of the relevant Geotechnical Completion Report which will require further representative sampling of soils and subsequent testing of the magnitude of possible shrinkage and swelling generally in accordance with AS2870:2011 which will require specific soil characterisation by laboratory testing.

8 FURTHER WORK

This Geotechnical Assessment Report has been prepared without the benefit of reviewing earthworks development proposals. For this reason, this report should only be used for the purposes of a feasibility study as intended. CMW Geosciences must be given the opportunity to review earthworks development proposals and undertake further work as described later herein prior to any Consent application.

Following a review of the proposed earthworks and civil plans, we recommend the following scope of work be undertaken:

CMW Geosciences

Ref: AKS2022-0029AB Rev 0

- More detailed site investigation to better define the extents and compressibility risks, in particular the low-lying area in southern third of #370.
- Additional Cone Penetration Tests (CPT) to target areas of filling where consolidation of soils at depth under the additional loading may cause significant settlements at ground surface.
 Our current level of site investigation is lean given the primary purpose of feasibility level reporting only.
- Slope stability analyses may be required with a particular focus on proposed stormwater ponds, any proposed gradients steeper than 1V:3H, and critical areas that require retention due to proposed earthworks.
- Further detailed geotechnical reporting and analysis specific to the proposed development plans.

9 CLOSURE

Additional important information regarding the use of your CMW report is provided in the 'Using your CMW Report' document attached to this report.

This report has been prepared for use by Dines Group Limited in relation to a Geotechnical Assessment Report 350 & 370 Karaka Road, Drury as well as in accordance with the scope, proposed uses and limitations described in the report. Should you have further questions relating to the use of your report please do not hesitate to contact us.

Where a party other than Dines Group Limited to rely upon or otherwise use this report, the consent of CMW should be sought prior to any such use. CMW can then advise whether the report and its contents are suitable for the intended use by the other party.

For and on behalf of CMW Geosciences

Prepared by:

Reviewed and authorised by:

Richard Tichborne

Senior Engineering Geologist

richardt@cmwgeo.com

Eugene Crestanello

Associate Engineering Geologist

eugenec@cmwgeo.com

Distribution: 1 electronic copy to Dines Group Limited

Original held at CMW Geosciences.

Appendices:

Appendix A: Site Investigation Plan

Appendix B: Hand Auger Logs

Appendix C: CPT Investigation Data

USING YOUR CMW GEOTECHNICAL REPORT

Geotechnical reporting relies on interpretation of facts and collected information using experience, professional judgement, and opinion. As such it generally has a level of uncertainty attached to it, which is often far less exact than other engineering design disciplines. The notes below provide general advice on what can be reasonably expected from your report and the inherent limitations of a geotechnical report.

Preparation of your report

Your geotechnical report has been written for your use on your project. The contents of your report may not meet the needs of others who may have different objectives or requirements. The report has been prepared using generally accepted Geotechnical Engineering and Engineering Geology practices and procedures. The opinions and conclusions reached in your report are made in accordance with these accepted principles. Specific items of geotechnical or geological importance are highlighted in the report.

In producing your report, we have relied on the information which is referenced or summarised in the report. If further information becomes available or the nature of your project changes, then the findings in this report may no longer be appropriate. In such cases the report must be reviewed, and any necessary changes must be made by us.

Your geotechnical report is based on your project's requirements

Your geotechnical report has been developed based on your specific project requirements and only applies to the site in this report. Project requirements could include the type of works being undertaken; project locality, size and configuration; the location of any structures on or around the site; the presence of underground utilities; proposed design methodology; the duration or design life of the works; and construction method and/or sequencing.

The information or advice in your geotechnical report should not be applied to any other project given the intrinsic differences between different projects and site locations. Similarly geotechnical information, data and conclusions from other sites and projects may not be relevant or appropriate for your project.

Interpretation of geotechnical data

Site investigations identify subsurface conditions at discrete locations. Additional geotechnical information (e.g. literature and external data source review, laboratory testing etc) are interpreted by Geologists or Engineers to provide an opinion about a site specific ground models, their likely impact on the proposed development and recommended actions. Actual conditions may differ from those inferred to exist due to the variability of geological environments. The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions. Interpretation of factual data can be influenced by design and/or construction methods. Where these methods change review of the interpretation in the report may be required.

Subsurface conditions can change

Subsurface conditions are created by natural processes and then can be altered anthropically or over time. For example, groundwater levels can vary with time or activities adjacent to your site, fill may be placed on a site, or the consistency of near surface conditions might be susceptible to seasonal changes. The report is based on conditions which existed at the time of investigation. It is important to confirm whether conditions may have changed, particularly when large periods of time have elapsed since the investigations were performed.

Interpretation and use by other design professionals

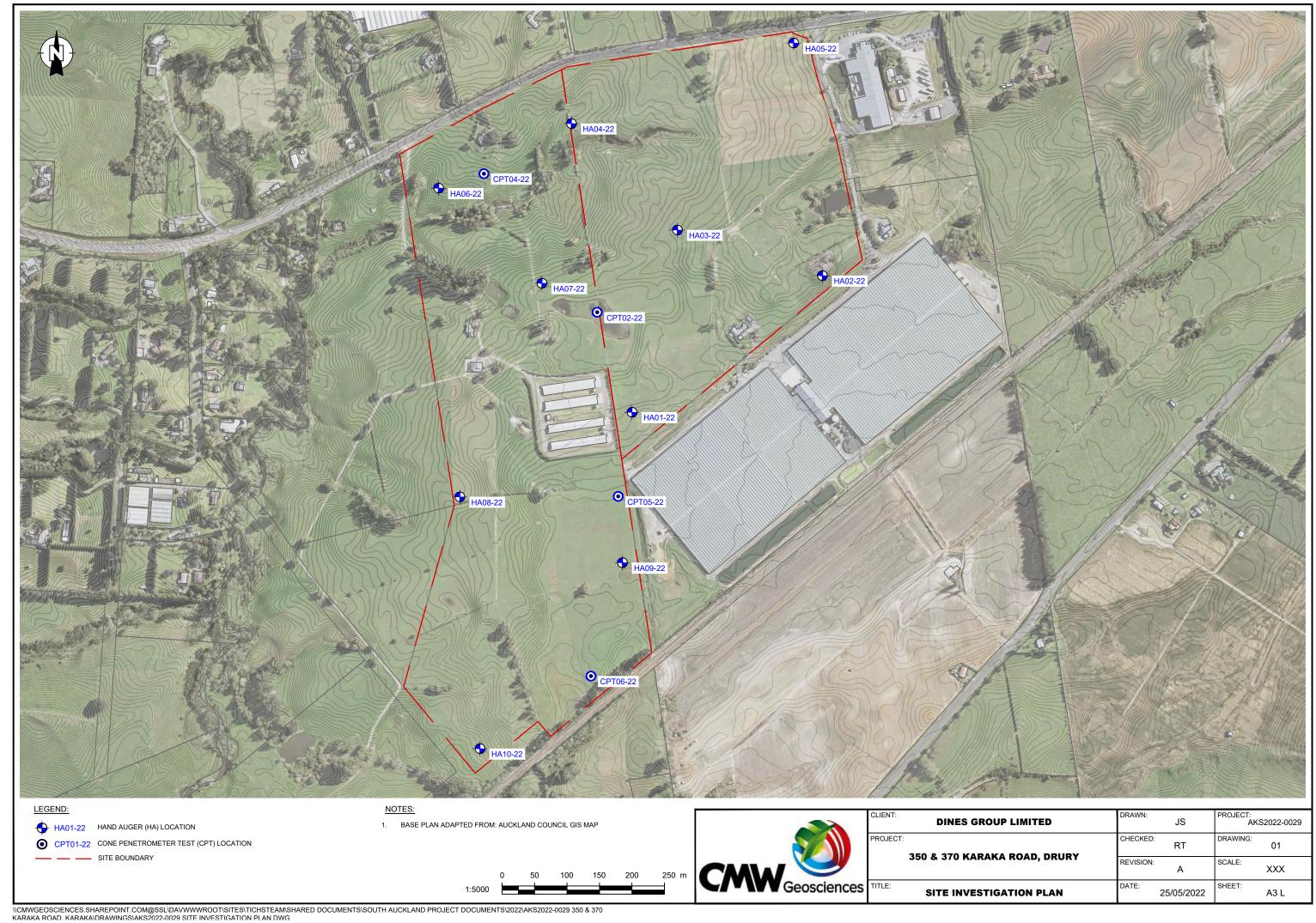
Costly problems can occur when other design professionals develop their plans based on misinterpretations of a geotechnical report. To help avoid misinterpretations, it is important to retain the assistance of CMW to work with other project design professionals who are affected by the contents of your report. CMW staff can explain the report implications to design professionals and then review design plans and specifications to see that they have correctly incorporated the findings of this report.

Your report's recommendations require confirmation during construction

Your report is based on site conditions as revealed through selective point sampling. Engineering judgement is then applied to assess how indicative of actual conditions throughout an area the point sampling might be. Any assumptions made cannot be substantiated until construction is complete. For this reason, you should retain geotechnical services throughout the construction stage, to identify variances from previous assumption, conduct additional tests if required and recommend solutions to problems encountered on site.

A Geotechnical Engineer, who is fully familiar with the site and the background information, can assess whether the report's recommendations remain valid and whether changes should be considered as the project develops. An unfamiliar party using this report increases the risk that the report will be misinterpreted.

Environmental Matters Are Not Covered


Unless specifically discussed in your report environmental matters are not covered by a CMW Geotechnical Report. Environmental matters might include the level of contaminants present of the site covered by this report, potential uses or treatment of contaminated materials or the disposal of contaminated materials. These matters can be complex and are often governed by specific legislation.

The personnel, equipment, and techniques used to perform an environmental study can differ significantly from those used in this report. For that reason, our report does not provide environmental recommendations. Unanticipated subsurface environmental problems can have large consequences for your site. If you have not obtained your own environmental information about the project site, ask your CMW contact about how to find environmental risk-management guidance.

CMW Geosciences 24

Ref: AKS2022-0029AB Rev 0

Appendix A: Site Investigation Plan

Appendix B: Hand Auger Logs

HAND AUGER BOREHOLE LOG - HA01-22

Client: Dines Group Limited Project: 350 & 370 Karaka Road

Site Location: Drury Project No.: AKS2022-0029

Date: 31/03/2022

Position: 1771051.2mE; 5889390.7mN Projection: NZTM

Elevation: 32.00m Datum: AUCKHT1946 Survey Source: Hand Held GPS Dynamic Cone Penetrometer Samples & Insitu Tests Graphic Log Groundwater Moisture Condition Material Description
Soil: Soil symbol; soil type; colour; structure; bedding; plasticity; sensitivity; additional comments. (origin/geological unit)
Rock: Colour; fabric; rock name; additional comments. (origin/geological unit) $\widehat{\Xi}$ (Blows/100mm) Depth 귐 10 Type & Results Depth 32.0 OL: TOPSOIL: Dark brown. Low plasticity. Minor rootlets. (Topsoil) 31.8 CL: Silty CLAY: Brown. Low plasticity. Insensitive. (South Auckland Volcanics) 0.4 Peak = >192.9kPa D 0.8 Peak = >192.9kPa ML: Clayey SILT with trace fine sand: Light brownish orange. Low plasticity. Insensitive. (South Auckland Volcanics) Peak = >192.9kPa Peak = >192.9kPa 1.6 2.0 Peak = >192.9kPa 2.4 Peak = >192.9kPa 29.5 CL: Clayey SILT: Light brownish orange mottled minor orange. Low plasticity. Insensitive. (South Auckland Volcanics) VSt 2.8 Peak = >192.9kPa 29.0 М CH: Silty CLAY: Grey mottled light red. High plasticity. (Puketoka Formation) 3.2 Peak = 151kPa Residual = 126kPa ... at 3.50m, Becoming white mottled light red and orange Peak = 190kPa Residual = 157kPa 3.6 4.0 Peak = 118kPa Residual = 110kPa Peak = >192.9kPa 4.4 4.8 Peak = 190kPa W sidual = 120kPa Borehole terminated at 5.0 m

Termination Reason: Target Depth Reached Shear Vane No: 2082 DCP No: Remarks: Groundwater not encountered.

HAND AUGER BOREHOLE LOG - HA02-22

Client: Dines Group Limited Project: 350 & 370 Karaka Road

Site Location: Drury Project No.: AKS2022-0029

Date: 01/04/2022

Position: 1771344.4mE; 5889601.0mN Projection: NZTM

Elevation: 29.00m Datum: AUCKHT1946 Survey Source: Hand Held GPS Dynamic Cone Penetrometer Samples & Insitu Tests Graphic Log Groundwater Moisture Condition $\widehat{\Xi}$ Material Description (Blows/100mm) Soil: Soil symbol; soil type; colour; structure; bedding; plasticity; sensitivity; additional comments. (origin/geological unit)
Rock: Colour; fabric; rock name; additional comments. (origin/geological unit) Depth 귐 10 Type & Results Depth 29.0 OL: TOPSOIL: Dark brown. Low plasticity. Minor rootlets. D 28.1 ML: Clayey SILT: Orange brown. Low plasticity. Insensitive to moderately sensitive. (South Auckland Volcanics) Peak = >192.9kPa 1.0 Peak = 139kPa Residual = 44kPa 1.2 Peak = >192.9kPa 1.6 ... at 1.60m. Becoming mottled trace red, orange and white. VSt 2.0 Peak = >192.9kPa 2 2.4 Peak = 134kPa 26.6 CH: Silty CLAY: White mottled minor pink and light orange. High plasticity, Insensitive to moderately Residual = 94kPa sensitive М (Puketoka Formation) 2.8 Peak = 99kPa Residual = 58kPa St 3.2 Peak = 84kPa Residual = 47kPa ... at 3.40m, Becoming white mottled minor light pink with trace fine to medium sand Peak = 154kPa Residual = 41kPa 3.6 ... at 3.80m, Becoming white with minor fine to medium sand. 4.0 Peak = 139kPa 25.0 SM: Fine to medium sandy SILT with minor clay: White. Low plasticity. Insensitive to moderately sensitive. Residual = 55kPa VSt Peak = >192.9kPa 4.4 W to ... at 4.50m, Becoming with no clay 4.8 Peak = UTP Н Borehole terminated at 5.0 m

Termination Reason: Target Depth Reached
Shear Vane No: 2082 DCP No:
Remarks: Groundwater not encountered.

HAND AUGER BOREHOLE LOG - HA03-22

Client: Dines Group Limited Project: 350 & 370 Karaka Road

Site Location: Drury Project No.: AKS2022-0029

Date: 31/03/2022

	Position: 1771121.1mE; 5889671.4mN Projection: NZTM											
E	Elevati	on: 27.50m				Datum: AUCKHT1946 Survey Source: Hand	Hel	d GF		Ovnami	ic Cone	
Groundwater	Sam _l Depth	oles & Insitu Tests Type & Results	RL (m)	Depth (m)	Graphic Log	Material Description Soil: Soil symbol; soil type; colour; structure; bedding; plasticity; sensitivity; additional comments. (origin/geological unit) Rock: Colour; fabric; rock name; additional comments. (origin/geological unit)	Moisture Condition	Consistency/ Relative Density	(E	Penetro	ometer 100mm)	
			27.5		-100	OL: TOPSOIL: Dark brown. Low plasticity. Trace rootlets.				Н		_
			27.4				1					
					1	(South Auckland Volcanics)	D					
	0.4	Peak = UTP										
	0.1				+-							
						from 0.50m to 1.20m, Becoming orange brown mottled black with some silt						
					1-1			Н				
	0.8	Peak = UTP			1		D to					
					F-7		М					
				1	- F							_
	1.2	Peak = >197.6kPa	26.3									
	1.2	1 can = 7 107.0m a	20.0		-X-X	CH: Silty CLAY: Reddish orange brown mottled trace light grey and black. (South Auckland Volcanics)						
					<u> </u>							
	1.6	Peak = 184kPa Residual = 108kPa				from 1.60m to 2.60m, Becoming grey mottled orange brown trace black.						
		Residual – Tooki a			<u></u>							
					×							
	0.0	Dark - 407 0kD			- <u>×</u> _×							
	2.0	Peak = >197.6kPa		2	××							
					-\ <u>\</u>							
					×							
	2.4	Peak = >197.6kPa			<u> </u>							
					- <u> </u> ×							
			24.9		××	CH: Silty CLAY: Light blue grey with trace orange and red.						
		5				(Puketoka Formation)						
	2.8	Peak = 146kPa Residual = 100kPa			X							
				3				VSt				
					<u> </u>		М					
	3.2	Peak = 170kPa Residual = 97kPa										
		i vesiuuai = 97KPa										
					- <u> </u> ×							
	3.6	Peak = 105kPa										
	3.0	Residual = 59kPa			X-X							
					- X	from 3.70m to 4.20m, Becoming light brown with trace light grey and red mottled black.						
					 X							
	4.0	Peak = 102kPa Residual = 56kPa		4					\vdash		-+	
		residual – SUNT'd			≠ -Ĵ							
					<u> </u>	from 4.20m to 4.50m, Becoming orange brown mottled some black.						
	4.4	Peak = 157kPa			<u></u>							
	4.4	Residual = 91kPa			- ×							
					<u> </u> ×_×	from 4.50m to 5.00m, Becoming light brown trace orange and grey mottled black.						
					<u></u>							
	4.8	Peak = UTP			<u> </u> ×_×							
					××			н				
				5	- 1	Borehole terminated at 5.0 m					土	_
							_					_

Termination Reason: Target Depth Reached DCP No: Shear Vane No: 3206 Remarks: Groundwater not encountered.

HAND AUGER BOREHOLE LOG - HA04-22

Client: Dines Group Limited Project: 350 & 370 Karaka Road

Site Location: Drury
Project No.: AKS2022-0029

Date: 31/03/2022

Position: 1770957.8mE; 5889835.3mN Projection: NZTM

Elevation: 21.90m Datum: AUCKHT1946 Survey Source: Hand Held GPS Dynamic Cone Penetrometer Samples & Insitu Tests Graphic Log Groundwater Moisture Condition Material Description
Soil: Soil symbol; soil type; colour; structure; bedding; plasticity; sensitivity; additional comments. (origin/geological unit)
Rock: Colour; fabric; rock name; additional comments. (origin/geological unit) $\widehat{\Xi}$ (Blows/100mm) Depth 귐 10 Type & Results Depth 21.9 OL: TOPSOIL: Brown. Low plasticity. (Topsoil)
CL: Silty CLAY: Brown. Low plasticity 21.8 D (South Auckland Volcanics) Peak = 162kPa Residual = 26kPa 0.4 ... at 0.40m, Becoming mottled light grey with trace fine sand. D to M Peak = 184kPa Residual = 48kPa 0.8 Peak = >197.6kPa 20.7 CH: Silty CLAY: Light grey mottled some brown and dark grey. High plasticity. Insensitive to moderately sensitive. (Puketoka Formation) 1.6 Peak = 170kPa Residual = 53kPa VSt Peak = 149kPa Residual = 61kPa 2.0 ... at 2.20m, Becoming orange brown mottled some grey. 2.4 Peak = 157kPa Residual = 56kPa 2.8 Peak = 170kPa Residual = 50kPa М 3.2 Peak = UTP 18.7 MH: Silty CLAY with some fine to coarse sand: Blue grey. High plasticity. Insensitive. (Puketoka Formation) Peak = 119kPa Residual = 48kPa 3.6 ... at 3.70m, Becoming light blue grey with trace fine sand 4.0 Peak = 102kPa VSt Residual = 56kPa Peak = 75kPa 4.4 Residual = 40kPa St 4.8 Peak = 75kPa Residual = 42kPa Borehole terminated at 5.0 m

Termination Reason: Target Depth Reached
Shear Vane No: 3206 DCP No:
Remarks: Groundwater not encountered.

HAND AUGER BOREHOLE LOG - HA05-22

Client: Dines Group Limited Project: 350 & 370 Karaka Road

Site Location: Drury Project No.: AKS2022-0029

Date: 31/03/2022

Position: 1771300.0mE; 5889959.3mN Projection: NZTM

Elevation: 25.80m Datum: AUCKHT1946 Survey Source: Hand Held GPS Dynamic Cone Penetrometer Samples & Insitu Tests **3raphic** Log Groundwater Moisture Condition Material Description
Soil: Soil symbol; soil type; colour; structure; bedding; plasticity; sensitivity; additional comments. (origin/geological unit)
Rock: Colour; fabric; rock name; additional comments. (origin/geological unit) $\widehat{\Xi}$ (Blows/100mm) Depth (귐 10 Type & Results Depth 25.8 OL: TOPSOIL: Dark brown. Low plasticity. Minor rootlets. (Topsoil)
ML: Clayey SILT: Brown. Low plasticity. Insensitive. (South Auckland Volcanics) 25.7 D 0.4 Peak = >197.4kPa VSt 0.8 Peak = >197.4kPa Peak = UTP 1.2 Н Peak = >197.4kPa 1.6 24.1 CH: Silty CLAY: Orange brown mottled trace grey and black. High plasticity. Insensitive. (Puketoka Formation) 2.0 Peak = 140kPa Residual = 72kPa 2.4 Peak = 157kPa Residual = 86kPa VSt ... at 2.70m, Becoming brown mottled some grey trace orange, black, red. 2.8 Peak = 146kPa Residual = 91kPa 3.2 Peak = 181kPa Residual = 64kPa ML: Sandy SILT: Light blue grey mottled orange, dark brown and black. (Puketoka Formation) 3.6 Peak = UTP 4.0 Peak = UTP Н ... at 4.30m, Becoming light blue grey mottled dark grey. Peak = UTP 4.4 4.8 Peak = >197.4kPa VSt Borehole terminated at 5.0 m

Termination Reason: Target Depth Reached Shear Vane No: 3206 DCP No: Remarks: Groundwater not encountered.

HAND AUGER BOREHOLE LOG - HA06-22

Client: Dines Group Limited Project: 350 & 370 Karaka Road

Site Location: Drury Project No.: AKS2022-0029

Date: 01/04/2022

Position: 1770753.3mE; 5889735.8mN Projection: NZTM

Elevation: 24.00m Datum: AUCKHT1946 Survey Source: Hand Held GPS Dynamic Cone Penetrometer Samples & Insitu Tests Graphic Log Groundwater Moisture Condition $\widehat{\Xi}$ Material Description (Blows/100mm) Soil: Soil symbol; soil type; colour; structure; bedding; plasticity; sensitivity; additional comments. (origin/geological unit)
Rock: Colour; fabric; rock name; additional comments. (origin/geological unit) Depth 귐 10 Type & Results Depth 24.0 OL: TOPSOIL: Dark brown. Low plasticity. Minor rootlets. 23.9 CH: SIlty CLAY: Orange brown. High plasticity. Insensitive to moderately sensitive. (South Auckland Volcanics) 0.4 Peak = >192.9kPa D VSt 0.8 Peak = >192.9kPa ... at 1.00m, Becoming mottled minor red. Peak = 99kPa Residual = 58kPa 1.2 St ... at 1.50m, Becoming mottled light grey. 1.6 Peak = 139kPa Residual = 55kPa ... at 1.80m. Becoming orange mottled red. Peak = 145kPa 2.0 ... from 2.00m to 2.20m, Becoming white mottled orange and pink. Residual = 44kPa 21.8 ML: SILT with some fine to medium sand and trace clay: Light orange brown. Low plasticity. Insensitive to moderately sensitive. (Puketoka Formation) 2.4 Peak = 172kPa Residual = 50kPa M 2.8 Peak = >192.9kPa 3.2 Peak = 168kPa Residual = 44kPa VSt Peak = 126kPa Residual = 44kPa 3.6 4.0 Peak = >192.9kPa at 4.20m. Becoming light grey 4.4 Peak = 134kPa Residual = 44kPa W W to s 4.8 Peak = 131kPa Residual = 64kPa s Borehole terminated at 5.0 m

Termination Reason: Target Depth Reached
Shear Vane No: 2082 DCP No:
Remarks: Groundwater encountered at 4.8m.

HAND AUGER BOREHOLE LOG - HA07-22

Client: Dines Group Limited Project: 350 & 370 Karaka Road

Site Location: Drury Project No.: AKS2022-0029

Date: 01/04/2022

Position: 1770912.4mE; 5889589.4mN Projection: NZTM

Elevation: 17.50m Datum: AUCKHT1946 Survey Source: Hand Held GPS Dynamic Cone Penetrometer Samples & Insitu Tests **3raphic** Log Groundwater Moisture Condition $\widehat{\Xi}$ Material Description (Blows/100mm) Soil: Soil symbol; soil type; colour; structure; bedding; plasticity; sensitivity; additional comments. (origin/geological unit)
Rock: Colour; fabric; rock name; additional comments. (origin/geological unit) Depth 귐 10 Type & Results Depth 17.5 OL: TOPSOIL: Dark brown. Low plasticity. Minor rootlets. (Topsoil) 17.3 MH: Clayey SILT: Light orange brown. High plasticity. Insensitive to moderately sensitive. (South Auckland Volcanics) Peak = 190kPa Residual = 47kPa 0.4 D 0.8 Peak = >192.9kPa ... at 0.80m, Becoming mottled trace red. Peak = >192.9kPa M ... at 1.40m, Becoming mottled trace white Peak = >192.9kPa 1.6 ... at 1.80m. Becoming with trace fine sand. Peak = >192.9kPa 2.0 2 15.3 ML: SILT with some fine sand and trace clay: Light orange brown. Low plasticity. Insensitive to moderately (Puketoka Formation) 2.4 Peak = >192.9kPa VSt M to 2.8 Peak = >192.9kPa ... from 2.80m to 2.90m, Becoming mottled some light grey. 3.2 Peak = >192.9kPa ... at 3.50m, Becoming dark orange 3.6 Peak = >192.9kPa 4.0 Peak = >192.9kPa Peak = >192.9kPa 4.4 ... at 4.50m, Becoming light grey mottled orange with trace fine sand. W to 4.8 Peak = 186kPa esidual = 41kPa Borehole terminated at 5.0 m

Termination Reason: Target Depth Reached
Shear Vane No: 2082 DCP No:
Remarks: Groundwater encountered at 4.8m.

HAND AUGER BOREHOLE LOG - HA08-22

Client: Dines Group Limited Project: 350 & 370 Karaka Road

Site Location: Drury
Project No.: AKS2022-0029

Date: 01/04/2022

Position: 1770786.0mE; 5889260.4mN Projection: NZTM

0	los 9 Incit. To -t-			ص I			× ₩		ynamic Penetro	
Depth	oles & Insitu Tests Type & Results	RL (m)	Depth (m)	Graphic Log	Material Description Soil: Soil symbol; soil type; colour; structure; bedding; plasticity; sensitivity; additional comments. (origin/geological unit) Rock: Colour; fabric; rock name; additional comments. (origin/geological unit)	Moisture Condition	Consistency/ Relative Density		Blows/1	00
Берш	Type & Results	25.0	-		OL: TOPSOIL: Dark brown. Low plasticity. Minor rootlets.		S P			_
		24.0			(Topsoil)					
		24.8		X X X	CH: Clayey SILT: Orange brown. High plasticity. Insensitive. (South Auckland Volcanics)					
0.4	Peak = >192.9kPa		-	× × ×						
			-	$\times \times \times$		D				
0.8	Peak = >192.9kPa		-							
			-	XXX	at 0.80m, Becoming light grey mottled light orange with minor fine sand.					
			1 -	[<u>×</u> x]						
1.2	Peak = >192.9kPa		-	X X X						
			-	$\begin{bmatrix} \times \times \times \\ \times & \times \end{bmatrix}$		D to M				
1.6	Peak = >192.9kPa		-							
1.0	reak - >192.9KFa			XX XXX						
		23.2		XX	ML: Fine sandy SILT: Light pink mottled minor light orange and grey. Low plasticity. Insensitive to					
	D 1 1400 01 D			(moderately sensitive. (Puketoka Formation)		VSt			
2.0	Peak = >192.9kPa		2 -	(
				X X X						
			-	×××						
2.4	Peak = >192.9kPa		-	× × ×						
				$\times \times $						
			-	$\times \times \times$						
2.8	Peak = 139kPa Residual = 30kPa		-	X X X X X X		М				
			3 —	XXX XXX	at 3.00m, Becoming with trace clay.	IVI			\sqcup	
				(at 3.00m, becoming with trace day.					
3.2	Peak = 112kPa Residual = 58kPa		-	(at 3.20m, Becoming light brown grey mottled minor light orange and pink.					
				$\times \times \times$						
			-	X X X						
3.6	Peak = 99kPa Residual = 67kPa		-	X X X						
				× × ×						
				$\times \times $						
4.0	Peak = 92kPa Residual = 50kPa		4 -	(\dashv	
				X X X (X X X			St			
				^ ^ / ("			
4.4	Peak = 99kPa Residual = 50kPa		-	(M to W				
			-	(
				$\times \times $.	
								1 1	1	
4.8	Peak = 126kPa Residual = 52kPa		-	(

Termination Reason: Target Depth Reached
Shear Vane No: 2082 DCP No:
Remarks: Groundwater not encountered.

HAND AUGER BOREHOLE LOG - HA09-22

Client: Dines Group Limited Project: 350 & 370 Karaka Road

Site Location: Drury

Project No.: AKS2022-0029

Date: 01/04/2022 Borehole Location: Refer to site plan

Checked by: SF Scale: 1:25 Logged by: CK

Sheet 1 of 1

Position: 1771036.4mE; 5889159.0mN Projection: NZTM

Elevation: 22.00m Datum: AUCKHT1946 Survey Source: Hand Held GPS

Groundwater	Samples & Insitu Tests Color: Soil: Soil symbol; soil type; colour; structure; bedding; plasticity; sensitivity; additional comments. (origin/Rock: Colour; fabric; rock name; additional comments. (origin/geological unit)		Material Description Soil: Soil symbol: soil type: colour: structure: hedding: plasticity: sensitivity: additional comments. (origin/geological unit)	Moisture Condition	Consistency/ Relative Density	F	ynami Penetro Blows/1	ometer	r l			
Groun	Depth	Type & Results		Dept	Graph	Rock: Colour; fabric; rock name; additional comments. (origin/geological unit)	Mois	Consis Relative	5	5 10	0 15	5
	0.4	Peak = 91kPa Residual = 34kPa	21.8	-	2	OL: TOPSOIL: dark brown. Low plasticity. Pt: Fibrous silty PEAT: blackish brown. Low plasticity. Moderately sensitive. Minor rootlets and brown wood fragments. (Puketoka Formation)	M to W					
01-04-2022	0.8	Peak = 59kPa Residual = 18kPa Peak = 29kPa	21.0	1 -	X X X X X X X X X X X X X X X X X X X	CL: Silty CLAY with trace sand: brown. Low plasticity. Sand: fine. Insensitive to moderately sensitive. (Puketoka Formation)	W to	St				
	1.6	Residual = 12kPa Peak = 34kPa Residual = 21kPa		-				F				
	2.0	Peak = 59kPa Residual = 18kPa Peak = 42kPa Residual = 26kPa		2			S	St				
	2.8	Peak = 37kPa Residual = 26kPa	19.2	3 —		CH: CLAY: brown mottled light brown and grey. High plasticity. (Puketoka Formation)		F				
	3.2	Peak = 78kPa Residual = 42kPa		-								
	4.0	Peak = 83kPa Residual = 59kPa Peak = 132kPa Residual = 89kPa		4 —			W to	St				
	4.4	Peak = 127kPa Residual = 48kPa		- - - - - - -				VSt				
	4.8	Peak = 132kPa Residual = 64kPa		5 —		Borehole terminated at 5.0 m						

Termination Reason: Target Depth Reached Shear Vane No: DCP No:

Remarks: Groundwater encountered at 1.0m. Poor recovery from 1.3m to 2.8m.

HAND AUGER BOREHOLE LOG - HA10-22

Client: Dines Group Limited Project: 350 & 370 Karaka Road

Site Location: Drury Project No.: AKS2022-0029

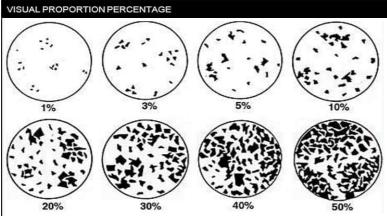
Date: 01/04/2022

Position: 1770817.0mE; 5888872.6mN Projection: NZTM

		on: 19.00m	//II⊏,	300001	'2.6mN Projection: NZTM Datum: AUCKHT1946 Survey Source: Hand	Hel				
Groundwater	Samp Depth	oles & Insitu Tests Type & Results	RL (m)	Depth (m) Graphic Log	Material Description Soil: Soil symbol; soil type; colour; structure; bedding; plasticity; sensitivity; additional comments. (origin/geological unit) Rock: Colour; fabric; rock name; additional comments. (origin/geological unit)	Moisture Condition	Consistency/ Relative Density	(B	Oynamic (Penetrom Blows/100	neter
			19.0	-	OL: TOPSOIL: Dark brown. Low plasticity. Minor rootlets. (Topsoil)	D				+
	0.4	Peak = 99kPa Residual = 44kPa	10.0	(X) (XX) (XX) (XX) (XX) (XX) (XX)	MH: Clayey SILT: Orange brown. High plasticity. Moderately sensitive. (South Auckland Volcanics)	D to M				
	0.8	Peak = 81kPa Residual = 30kPa		1		М				
res	1.2	Peak = 78kPa Residual = 44kPa	17.8		MH: Fine sandy SILT with minor clay: Light grey. high plasticity. Moderately sensitive. (Puketoka Formation)		St			
Ingres	1.6	Peak = 86kPa Residual = 27kPa		- X X X X X X X X X X X X X X X X X X X						
	2.0	Peak = 120kPa Residual = 36kPa		2 - (×) 2 - (×) (×) (×)	at 2.00m, Becoming orange.	w				
	2.4	Peak = 139kPa Residual = 58kPa		-X X T X X T X X T X X T X X						
Q1-04-2022	2.8	Peak = 131kPa Residual = 41kPa		3 - × ×	from 3.00m to 3.40m, Becoming with some dark orange fine sand sized limonite inclusions.		VSt			
	3.2	Peak = >192.9kPa			Iron 5.50m to 3.45m, Decoming war some dark drange into said sized inflorme inclusions.					
	3.6	Peak = 86kPa Residual = 55kPa	15.3		CH: Silty CLAY: Dark grey. High plasticity. Insensitive. (Puketoka Formation)	_	St			
	4.0	Peak = 102kPa Residual = 70kPa		4 - × -		W to S				
	4.4	Peak = 99kPa Residual = 64kPa		X X X X			VSt			
	4.8	Peak = 99kPa Residual = 58kPa					St			
				5	Borehole terminated at 5.0 m	t				\pm

Termination Reason: Target Depth Reached
Shear Vane No: 2082 DCP No:

Remarks: Groundwater encountered at 3.0m. Poor recovery 3.5-4.0m.


CMW Geosciences – SOIL (Field Logging Guide)

SEQUENCE OF TERMS:

Fine: Soil Symbol – Soil Type – Colour – Structure – (Consistency) – (Moisture) – Bedding – Plasticity – Sensitivity – Additional Comments – Origin/Geological Unit Coarse: Soil Symbol – Soil Type – Colour – Structure – Grading – Particle shape – (Relative Density) – (Moisture) – Bedding – Additional Comments – Origin/Geological Unit

BEHAVIOURAL SOIL CLASSIFICATION SYSTEM								
Major Divisions	(behaviour bas	ed logging)	Soil Symbol	Soil Name				
	Gravel	Clean gravel <5%	GW	Well graded gravel, fine to coarse gravel				
	>50% of coarse	smaller 0.075mm	GP	Poorly graded gravel				
	fraction	Gravel	GM	Silty gravel				
Coarse grained soils	>2mm	with >12% fines	GC	Clayey gravel				
more than 65%>0.06mm	Sand ≥50% of coarse	Clean	SW	Well-graded sand, fine to coarse sand				
		sand	SP	Poorly graded sand				
	fraction	Sand	SM	Silty sand				
	<2mm	with >12% fines	sc	Clayey sand				
	Exhibits		ML	Silt				
Fine mained	dilatant behaviour	inorganic	МН	Silt of high plasticity				
Fine grained soils 35% or	beriavioui	organic	OL	Organic silt				
more			CL	Clay of low plasticity				
<0.06mm	No dilatant behaviour	inorganic	СН	Clay of high plasticity				
		organic	OH	Organic clay				
Highl	y Organic Soils	Pt	Peat					

PROPORTIONAL TERMS DEFINITION								
Fraction	Term	% of Soil Mass	Example					
Major	() [UPPER CASE]	≥50 [major constituents]	GRAVEL					
Subordinate	() [lower case]	20 – 50	Sandy					
	with some	12 – 20	with some sand					
Minor	with minor	5 – 12	with minor sand					
	with trace of (or slightly)	< 5	with trace of sand (slightly sandy)					

GRAIN SIZE CRITERIA											
	COARSE							FINE		ORGANIC	
				Gravel			Sand				
TYPE	Boulders	Cobbles	coarse	medium	fine	coarse	medium	fine	Silt	Clay	Organic Soil
Size Range (mm)	200	60	20	6	2	0.6	0.2	0.06	0.002		
Graphic Symbol		10	305						XXX		平 平 平 4下 平 示 示

ADDITIONAL GRAPHIC LOG SYMBOLS							
Term	Symbol						
Topsoil							
Fill							
Bitumen							
Concrete							

ORGANIC SOILS / DESCRIPTORS							
Term	Description						
Topsoil	Surficial organic soil layer that may contain living matter. However, topsoil may occur at greater depth, having been buried by geological processes or man-made fill, and should be termed a buried topsoil.						
Organic clay, silt or sand	Contains finely divided organic matter; may have distinctive smell; may stain; may oxidize rapidly. Describe as for inorganic soils.						
Peat	Consists predominantly of plant remains. Firm: Fibres already compressed together Spongy: Very compressible and open structure Plastic: Can be moulded in hand and smears in fingers Fibrous: Plant remains recognisable and retain some strength Amorphous: No recognisable plant remains						
Rootlets	Fine, partly decomposed roots, normally found in the upper part of a soil profile or in a redeposited soil (e.g. colluvium or fill)						
Carbonaceous	Discrete particles of hardened (carbonised) plant material.						

SHADE AND COLOUR									
1	2	3							
light dark mottled streaked	pinkish reddish yellowish brownish greenish bluish greyish	pink red orange yellow brown green blue white grey black							

SOIL STRUCTU	IRE	GRADING (GRAVELS & SANDS)				
Term	Description	Term	Description			
Homogeneous The total lack of visible bedding and the same colour and appearance throughout			Well Good representation of all particle size ra			
Bedded The presence of layers		Graded	largest to smallest			
Fissured	Breaks along definite planes of fracture with little resistance to fracturing		Limited representation of	grain sizes – further		
Polished	Fracture planes are polished or glossy		divided into:			
Slickensided	Cohesive soil that can be broken down into small angular lumps which resist further breakdown		Uniformly graded	Most particles about the		
Blocky				Absence of one or more intermediate sizes		
Lensoidal			Gap graded			

ROUNDING/PARTICLE SHAPE									
Rounded	Subrounded	Subangular	Angular						

CONSISTENCY TERMS FOR FINE SOILS						
Descriptive term	Undrained Shear Strength (kPa)	Diagnostic Features	Abbreviation			
Very Soft	<12	Easily exudes between fingers when squeezed	VS			
Soft	12-25	Easily indented by fingers	S			
Firm	25-50	Indented by strong finger pressure and can be indented by thumb pressure	F			
Stiff	50-100	Cannot be indented by thumb pressure	St			
Very Stiff	100-200	Can be indented by thumb nail	VSt			
Hard	200-500	Difficult to indent by thumb nail	Н			

DENSITY INDEX (RELATIVE DENSITY) TERMS FOR COARSE SOILS							
Descriptive term	Density Index (RD)	SPT "N" value (blows/300mm)	Dynamic Cone (blows/100mm)	Abbreviation			
Very Dense	> 85	> 50	> 17	VD			
Dense	65 - 85	30 - 50	7 - 17	D			
Medium dense	35 - 65	10 - 30	3 - 7	MD			
Loose	15 - 35	4 - 10	1 - 3	L			
Very loose	< 15	< 4	0 - 2	VL			

- Where strength data cannot be confirmed Loosely Packed (LP) and Tightly Packed (TP) may be used.

 No correlation is implied between Standard Penetration Test (SPT) and Dynamic Cone Penetrometer (Scala) Test values.
- SPT "N" values are uncorrected.

MOISTURE	CONDITION				BEDDING THICKNE	ESS (Sedimentary)	dimentary) BEDDING INCLINATION		
Condition	Description	Coarse Soils	Fine Soils	Abbreviation	Term	Bed Thickness	Term	Inclination (from horizontal)	
Dry	Looks and feels dry	Runs freely through	Hard, powdery or friable	D	Thinly laminated	< 2mm	Sub-horizontal	0° - 5°	
		hands	Weakened		Laminated	2mm - 6mm	Gently inclined	6º - 15º	
.			by moisture, but no free		Very thin	6mm - 20mm	Moderately inclined	16º - 30º	
Moist	water on hands	М	Thin	20mm - 60mm	Steeply inclined	31° - 60°			
	Feels cool, darkened in colour	Tends to	when remoulding Weakened		Moderately thin	60mm - 200mm	Very steeply inclined	61° - 80°	
	iii colodi	cohere	by moisture,		moderatery triii	20011111	Sub vertical	81° - 90°	
Wet			free water	W	Moderately thick	0.2m - 0.6m			
			forms on hands		Thick	0.6m - 2m	SENSITIVITY OF	SOIL	
			when handling			2.0		Shear Strength	
Saturated			n colour and n the sample	S	Very thick	> 2m	Descriptive Term	Ratio = $\frac{undisturbed}{remoulded}$	

		hands			0.6 0	SENSITIVITY OF SOIL		
		when handling		THICK	0.611 - 2111		Shear Strength	
aturated		darkened in colour and s present on the sample	S	Very thick	> 2m	Descriptive Term	Ratio = $\frac{undisturbed}{remoulded}$	
ASTICITY (CLAYS & SILTS)					Insensitive, normal	< 2		
erm	prm Description				Moderately sensitive	2 – 4		
gh plastic	h plasticity Can be moulded or deformed over a wide range of moisture contents without cracking or showing any tendency to volume change		tents without	Sensitive	4 – 8			
When moulded can be crumbled in the fingers; may show quick or dilatant		Extra sensitive	8 – 16					
w plastici	ty	behaviour			Quick	> 16		

Revision 3 April 2018

CMW Geosciences – ROCK (Field Logging Guide)

SEQUENCE OF TERMS:

(Weathering) - Colour - Fabric or Bedding - Rock Name - (Strength) - Discontinuities - Additional notes - Origin/Geological Unit

(vveatriering) – colour	- I ablic of b	bedding - Nock Name - (Strength) - Discontinuities -			_ `			F00	
SCALE OF ROCK MAS	SS WEATHER	RING	SHADE A	ND COL	OUR	1	BEDDING THICKNESS (Sedimentary)		
Term	Grade	Description	1	2		3	Term	Bed Thickness	
Unweathered (fresh rock)	UW	Rockmass shows no loss of strength, discolouration or other effects due to weathering. There may be slight discolouration on major rock mass defect	light	pinkish		pink (pk)	Thinly laminated	< 2mm	
TOCK)		surfaces or on clasts.	dark mottled		reddish yellowish	red (rd) orange (or)	Laminated	2mm - 6mm	
Slightly Weathered	SW	The rock mass is not significantly weaker than when fresh. Rock may be discoloured along	streaked	browni greeni	ish ish	yellow (ye) brown (br)	Very thin	6mm - 20mm	
0 ,		defects, some of which may have been opened slightly.		bluis greyis		green (gr) blue (bl)	Thin	20mm - 60mm	
		The rock mass is significantly weaker than the fresh rock and part of the rock mass may have been		groyic	311	white (wh) grey (gy)	Moderately thin	60mm - 200mm	
Moderately	N 41.07	changed to soil. Rock material may be discoloured				black (bk)	Moderately thick	0.2m - 0.6m	
Weathered	MW	and defect and clast surfaces will have a greater discolouration, which also penetrates slightly into the rock material. Increase in density of defects due to physical disintegration.	EARRIC T	FABRIC TERMS			Thick	0.6m - 2m	
							Very thick	> 2m	
		Most of the original rock mass strength is lost. Material is discoloured and more than half the mass	Fine (< 25 Coarse (2			Folded BEDDING INCLINATION		TION	
		is changed to a soil by chemical decomposition or	100mm)		Fol	iated		Inclination	
Highly Weathered	HW	disintegration (increase in density of defects/fractures). Decomposition adjacent to	Massive (r fabric)	10	Gn	eissose	Term	(from horizontal)	
		defects and at the surface of clasts penetrates deeply into the rock material. Lithorelicts or	Banded		Inte	erbedded	Sub-horizontal	0° - 5°	
		corestones of unweathered or slightly weathered	Bedded	Bedded Laminated		minated	Gently inclined	6º - 15º	
Completely Weathered		rock may be present. Original rock strength is lost, and the rock mass	01 1				Moderately inclined	16º - 30º	
	CW	changed to a soil either by decomposition (with	Cleaved		Lin	eated	Steeply inclined	31º - 60º	
weathered		some rock fabric preserved) or by physical disintegration.	Crossbedo	ded	Sch	nistose	Very steeply inclined	61° - 80°	
Residual Soil	RS	Rock is completely changed to a soil with the original fabric destroyed (pedological soil).	Flowbande	ed			Sub-vertical	81º - 90º	

ROCK GRAPHIC LOG SYMBOLS				
Туре	Symbol			
Siltstone	×××××× ×××××××			
Sandstone				
Mudstone				
Limestone				
Coal				
Breccia				
Conglomerate	00000			
Igneous	/ / / / / /			
Metamorphic	**************************************			
Pyroclastic (Volcanic Ash)				
Gypsum	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			

SAMPLES

50mm

Undisturbed sample

Undisturbed sample

63mm SPT – sample

SPT - solid core

Bulk disturbed

Core sample

recovered

sample

ROCK STRENGT	H TERMS					
Term	Abbreviation	Field Identification of Specimen	Unconfined uniaxial compressive strength q. (MPa)	Point load strength I ₂		
Extremely strong	ES	Can only be chipped with geological hammer	> 250	> 10		
Very strong	VS	Requires many blows of geological hammer to break it	100 - 250	5 - 10		
Strong	S	Requires more than one blow of geological hammer to fracture it	50 - 100	2 - 5		
Moderately strong	MS	Cannot be scraped or peeled with a pocket knife. Can be fractured with single firm blow of geological hammer	20 - 50	1 - 2		
Weak	W	Can be peeled by a pocket knife with difficulty. Shallow indentations made by firm blow with point of geological hammer	5 - 20			
Very weak	VW	Crumbles under firm blows with point of geological hammer. Can be peeled by a pocket knife	1 - 5	< 1		
Extremely weak (use soil description)	EW	Indented by thumb nail or other lesser strength terms used for soils	<1			
Note: No correlation is implied between a and less						

GROUNDW	/ATER	WELL INSTALLATION DETAILS			
Cumple of	Definition	Term	Symbol		
Symbol	Delinition	Disir standains			
	Water strike or standing groundwater at date	Plain standpipe	LI I		
	given	Slotted standpipe			
	Water strike	Cloud diamapipo			
	(superseded by piezometer dip)	Inclinometer	98		
			_		
ADDITIONA	AL TERMS	WELL BACKELL DETAIL	1 S		

Unable to penetrate

Percentage of

Percentage of

recovered core

recovered core in

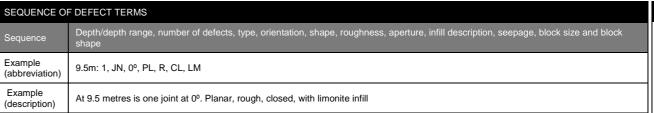
lengths in excess of

UTP

RQD

Recovery

Nc


В

ng e	i idiii otariapipo						
-	Slotted standpipe						
	Inclinometer	90					
	WELL BACKFILL DETAILS						
	Term	Symbol					
	Bentonite Seal						
	Sand Backfill						
	Gravel Backfill						
	Grout/Bentonite						
- 1	1						

Concrete

		Hand Auger	НА
		Open Barrel	ОВ
	poq	Triple Tube	TT
	Drilling Method	Core Loss	Х
	Drilli	Wash Bore	WB
4		Percussion	PER
4	Core Size	Sonic	SNC
\exists		Standard Penetration Test	SPT
4		83.0mm	PQ3
		61.1mm	HQ3

DRILLING METHOD

ORIENTATION

DEFECT TYPE TERMS		
Term	Definition	Abbreviation
Drilling induced fracture	Fracture caused by drilling. Commonly smooth (core spun) or irregular (broke in tension)	DI
Contact	Surface between two different lithogies	CN
Bedding (may be open or closed)	Surface that separates each successive layer of stratified rock from its preceeding layer either parallel or sub-parallel to layering	В
Foliation	Repetitive layering in rocks caused by shearing and formed parallel to the direction of shear or perpendicular to the direction of higher pressure	F
Cleavage	Break along a planar anisotropic surface in rock determined by structure and strength of the crystal lattice Smooth surfaces often having reflective surfaces	CV
Joint	Single fracture across which rock has little or no tensile strength, but which is not parallel or sub-parallel to layering or planar anisotropy in the rock substance. May be open or closed.	JN
Sheared Zone	Zone of rock substance with roughly parallel near planar, curved or undulating boundaries cut by closely spaced joint, sheared surfaces or other defects. Some of the defects are usually curved and intersect to divide the mass into lenticular or wedge-shaped blocks.	SZ
Sheared Surface	A near planar, curved or undulating surface, which is usually smooth, polished or slickensided	SS
Crushed Seam	Seam with roughly parallel, almost planar boundaries, composed of disorientated, usually angular fragments of the host rock. The seam has soil properties	CS
Decomposed Zone/Seam	Seam or zone of soil substance, often with gradational boundaries. Formed by weathering of the rock substance in place	WS
Infilled Seam/Zone	Seam or zone of soil substance usually with distinct roughly parallel boundaries formed by the migration of soil into an open cavity or joint, infilled seams less than 1mm thick may be described as veneer or coating on joint surface	IS

PLA	NARITY AND RO	OUGHNESS	PLANARITY AND ROUGHNESS EXAMPLES	
	Term	Description	Abbreviation	E/d IIII EEO
<u></u>	Planar	The defect does not vary in orientation.	PL	rough
ari	Undulating	The defect has a wavy surface.	UN	1
Planarity	Stepped	The defect has one or more well defined steps.	ST	smooth
	Note: The ass scale of the ob	sessment of defect shape is partly influorservation.	lenced by the	slickensided
	Slickensided	Grooved or striated surface usually polished.	SS	
seauc	Smooth	Smooth to touch. Few or no surface irregularities.	S	STEPPED
Roughness	Rough	Many small surface irregularities (amplitude generally more than 1mm). Feels like fine to coarse sandpaper.	R	rough
		- Sanapapon		Sillour
INITH	II TVDE	INCILL MATERIAL		

	APERTURE OF DISCONTINUITY SURFACES				
	Term	Aperture (mm)	Description	Abbreviation	
	Tight	Nil	Closed CL		
)	Very narrow	> 0 - 2		CL	
	Narrow	2 - 6			
	Moderately narrow	6 - 20	Gapped	GA	
	Moderately wide	20 - 60			
	Wide	60 - 200	Open	OP	
	Very wide	> 200			

INFILL TYPE		
Term	Abbreviation	
Clean	CN	
Coated (Material)	со	
Infill (Material)	IF	
Stained (Material/Colour)	ST	

Very Small

Very Large

Small

Medium

Large

	INT ILL WATERIA	1	attation at the d
	Term	Abbreviation	slickensided
1	Clay	CL	UNDULATIN
4	Silt	Z	
	Sand	S	rough
1	Gravel	G	smooth
+	Calcite	CA	
	Carbonaceous	СВ	slickensided
- I	Limonite	LM	
	Manganese	MG	PLANA

PY

QZ SU

٧S

S

M

VL

ROCK MASS BLOCK SHAPE

SPACING OF DEFECTS/DISCONTINUITIES		
Term	Spacing	
Very widely spaced	> 2m	
Widely spaced	600mm - 2m	
Moderately widely spaced	200mm - 600mm	
Closely spaced	60mm - 200mm	
Very closely spaced	20mm - 60mm	
Extremely closely spaced	< 20mm	

SEEPAGE		
OLEI NOL		Mangar
Term	Abbreviation	Mica
Wet	W	Pyrite
Seepage	SP	Quartz
Flow	F	Sulphid

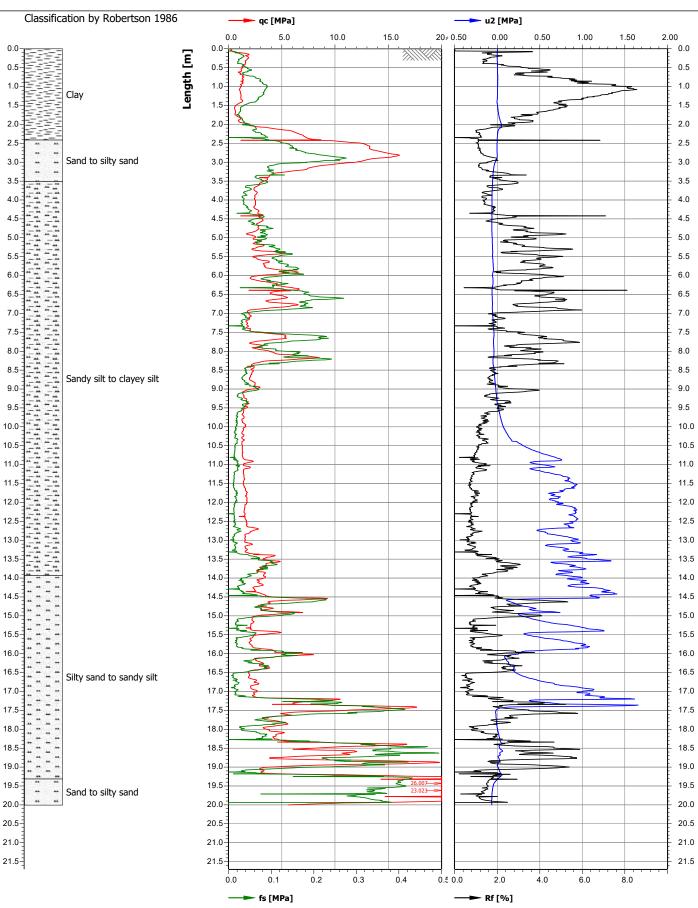
DESCRIPTION OF BLOCK SIZE IN THE ROCK MASS

< 60mm

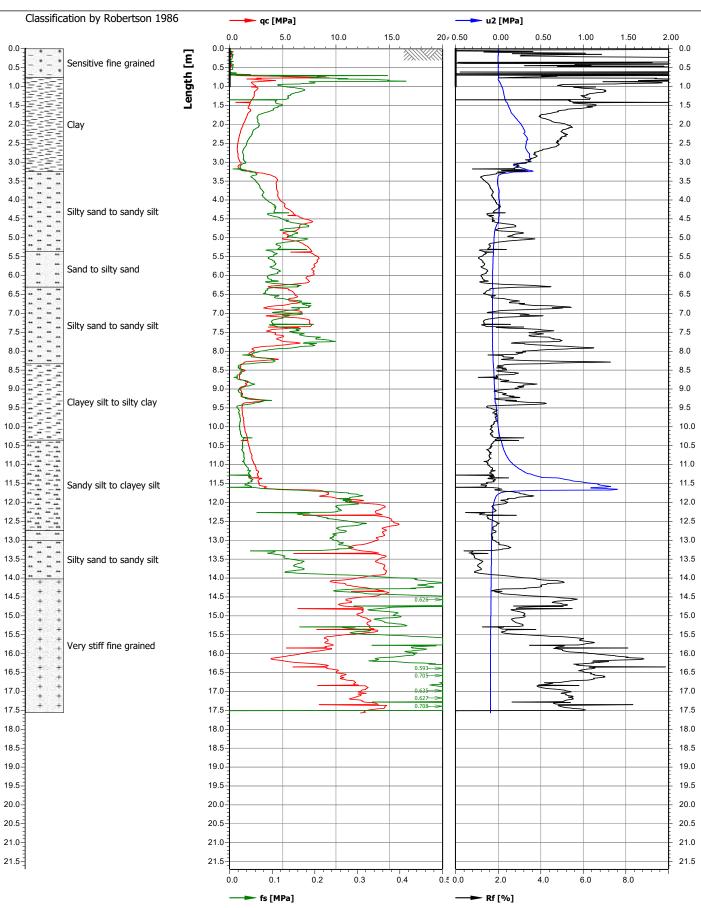
60 - 200mm

200 - 600mm

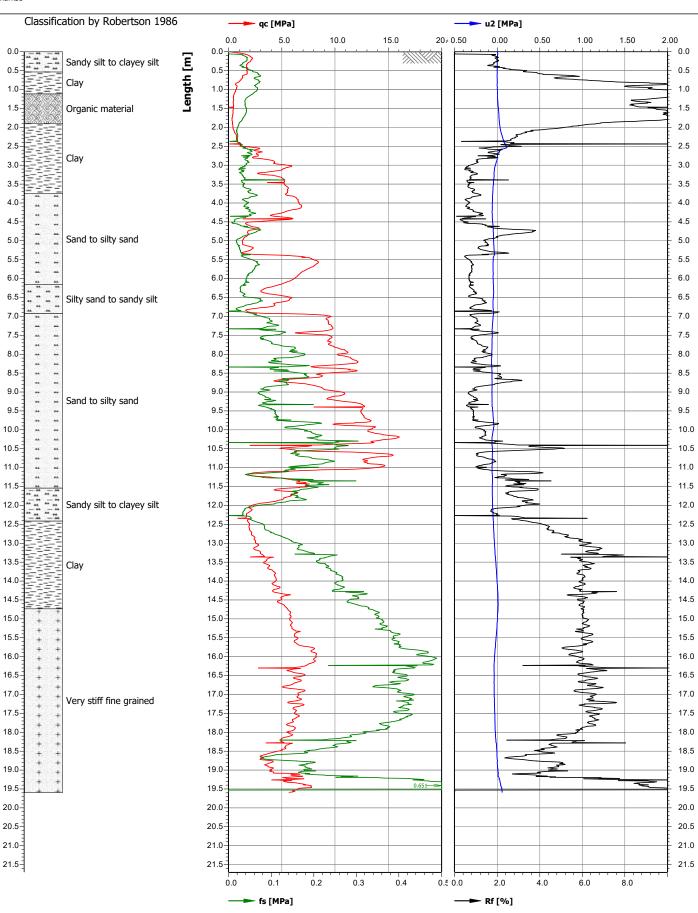
600mm - 2m

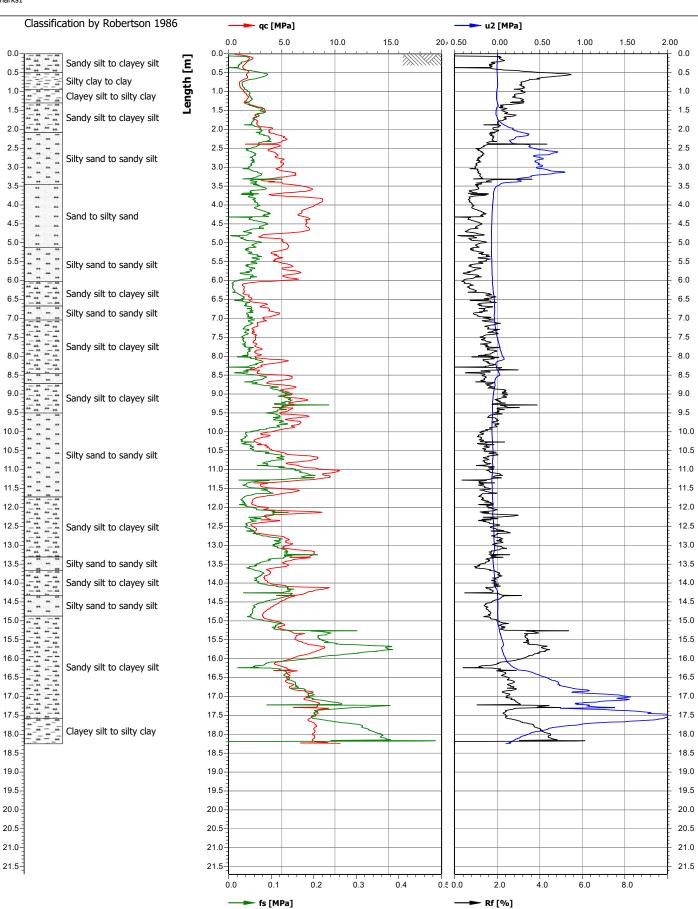

> 2m

	Diook onapo	Biocontinuity / triangomone	/ IDDIO VIGITOTI
	Polyhedral	Irregular discontinuities without arrangement into distinct sets, and of small persistence	Po
	Tabular	One dominant set of parallel discontinuities (eg bedding planes), with other non-continuous discontinuities; block length and width >> thickness	Та
	Prismatic	Two dominant sets of discontinuities orthogonal and parallel, with a third irregular set; block length and width >> thickness	Pr
-	Equidimensional	Three dominant orthogonal sets of discontinuities, with some irregular discontinuities	Eq
	Rhomboidal	Three or more dominant, mutually oblique sets of discontinuities; oblique shaped equidimensional blocks	Rh
\dashv	Columnar	Several (usually more than three) sets of continuous, parallel discontinuities crossed by irregular discontinuities; length >> other dimensions	Co

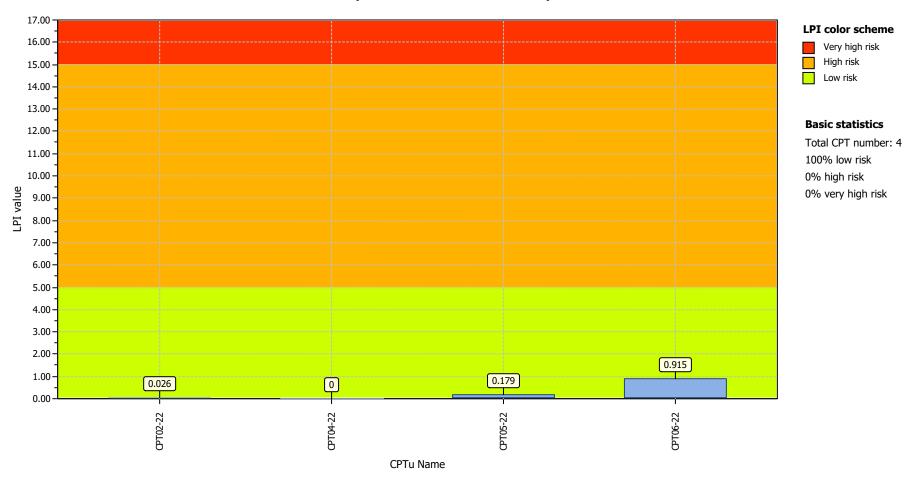

Revision 2 April 2018

Appendix C: CPT Investigation Data


	Project name	Date investigation		
PRÖ-DRII I	CMW-AKS2022-0029	14/04	/2022	
PRO-DRILL SPECIALIST DRILLING ENGINEERS	Test name	Cone name		
	CPT02-22	S10CFIIP.2097		
Test location name	Client	Net surface area quotient of	Nominal surface area of cone	
	CMW	0.800/0.000	10.0/150.0	
X coordinate [m]/Y coordinat 0.00/0.00	Project contractors	Fig. no.:		
Z value [m]	Project engineer	Scale	Page	
0.00		1:100	1/1	
Remarks1				


	Project name	Date investigation	
PRÖ-DRII I	CMW-AKS2022-0029	14/04/2022	
PRO-DRILL SPECIALIST DRILLING ENGINEERS	Test name	Cone name	
	CPT04-22	S10CFIIP.2097	
Test location name	Client	Net surface area quotient of	Nominal surface area of cone
	CMW	0.800/0.000	10.0/150.0
X coordinate [m]/Y coordinat Project contractors 0.00/0.00		Fig. no.:	
Z value [m]	Project engineer	Scale	Page
0.00		1:100	1/1
Remarks1			

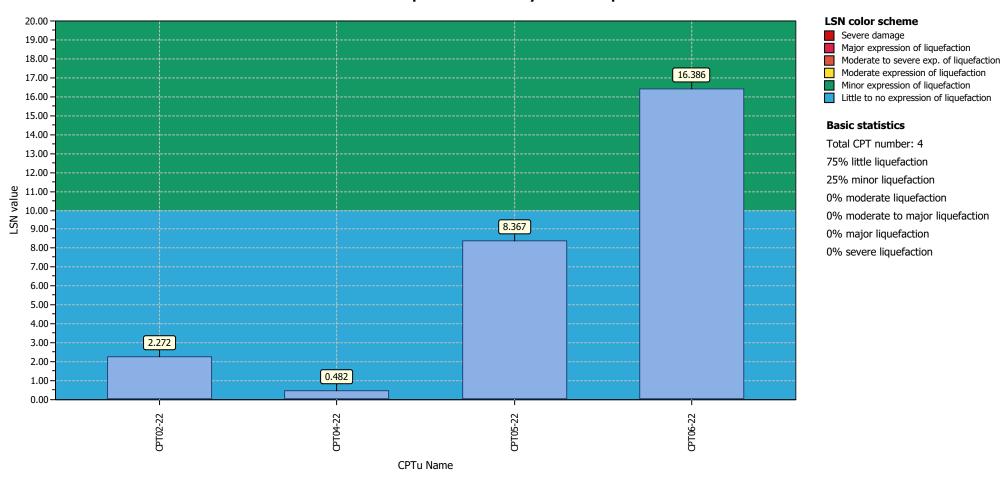
	Project name		Date investigation	
PRO-DRILL	CMW-AKS2022-0029	14/04/2022		
SPECIALIST DRILLING ENGINEERS	Test name	Cone name		
	CPT05-22	S10CFIIP.2097		
Test location name	Client CMW	Net surface area quotient of 0.800/0.000	Nominal surface area of cone 10.0/150.0	
X coordinate [m]/Y coordinat Project contractors Fig. no.:				
Z value [m] 0.00	Project engineer	Scale 1:100	Page 1/1	
Remarks1				


	Project name	Date investigation		
PRÖ-DRII I	CMW-AKS2022-0029	14/04/2022		
PRO-DRILL SPECIALIST DRILLING ENGINEERS	Test name	Cone name		
	CPT06-22	S10CFIIP.2097		
Test location name	Client	Net surface area quotient of	Nominal surface area of cone	
	CMW	0.800/0.000	10.0/150.0	
X coordinate [m]/Y coordinat 0.00/0.00	Project contractors	Fig. no.:		
Z value [m]	Project engineer	Scale	Page	
0.00		1:100	1/1	
Remarks1				

Project title:

Location:

Overall Liquefaction Potential Index report

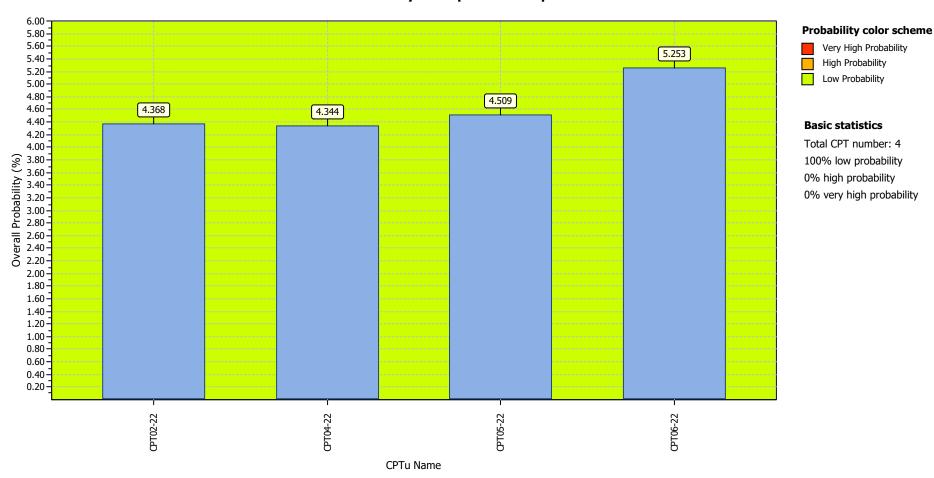


GeoLogismikiGeotechnical Engineers
Merarhias 56
http://www.geologismiki.gr

Project title:

Location:

Overall Liquefaction Severity Number report

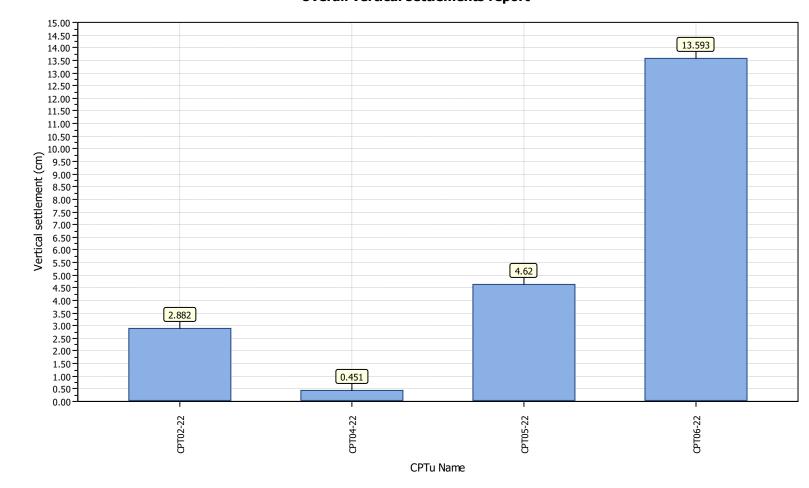


Geotechnical Engineers http://www.geologismiki.gr

Project title:

Location:

Overall Probability for Liquefaction report

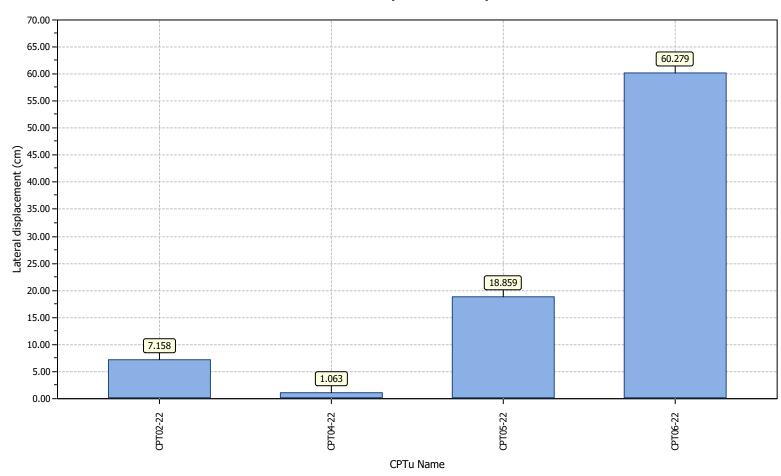


GeoLogismikiGeotechnical Engineers Merarhias 56 http://www.geologismiki.gr

Project title :

Location:

Overall vertical settlements report

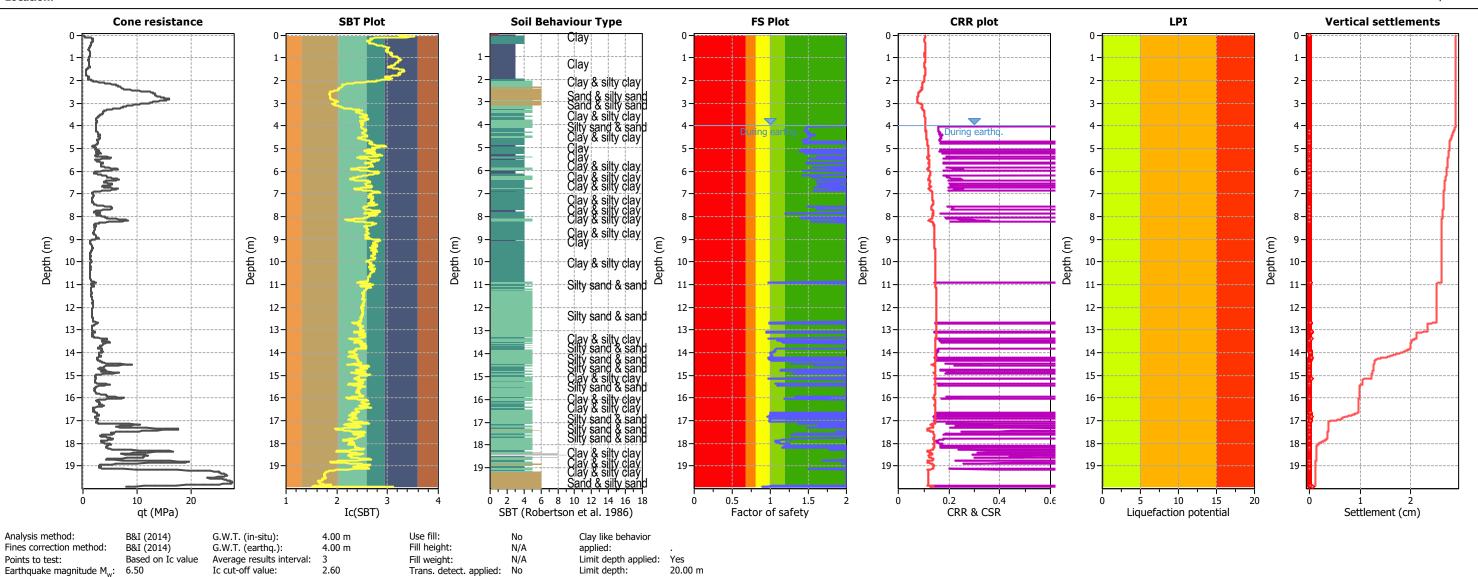


GeoLogismikiGeotechnical Engineers
Merarhias 56
http://www.geologismiki.gr

Project title:

Location:

Overall lateral displacements report



Project: Location:

Peak ground acceleration: 0.19

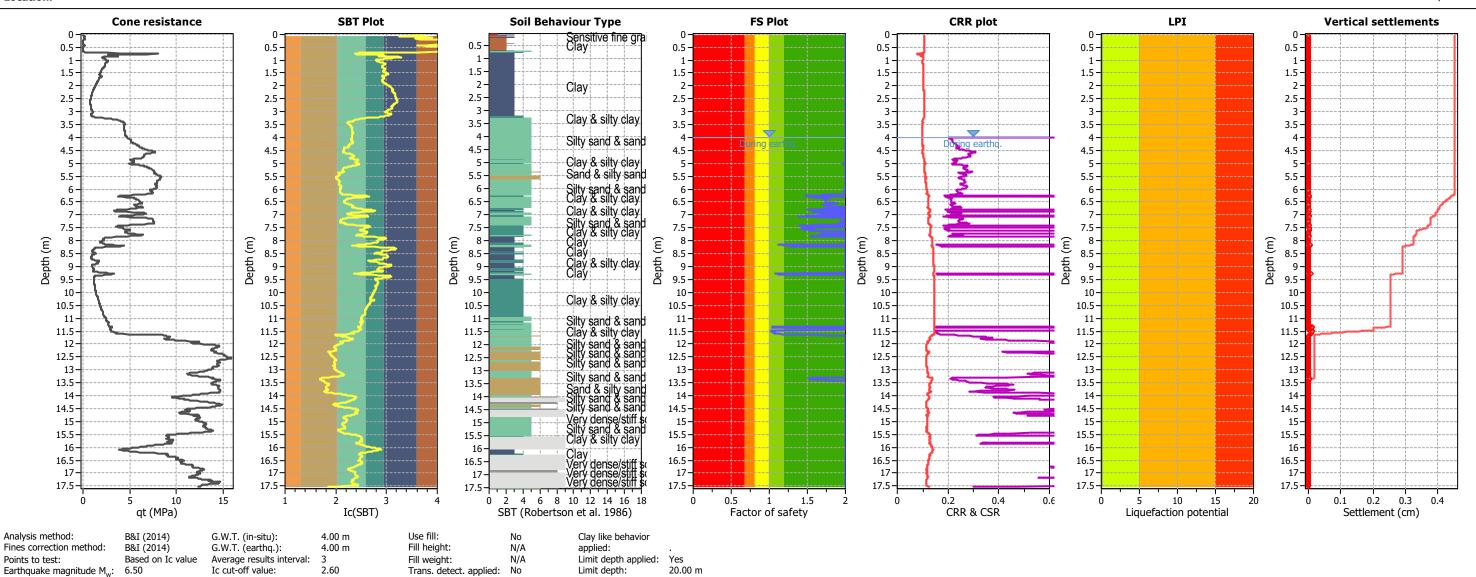
CPT: CPT02-22

Total depth: 19.91 m

Unit weight calculation: Based on SBT

 K_{σ} applied:

MSF method:


Method based

Project: Location:

Peak ground acceleration: 0.19

CPT: CPT04-22

Total depth: 17.52 m

Unit weight calculation:

Based on SBT

 K_{σ} applied:

MSF method:

Method based

qt (MPa)

Based on Ic value

G.W.T. (in-situ):

G.W.T. (earthq.):

Ic cut-off value:

Average results interval:

Unit weight calculation: Based on SBT

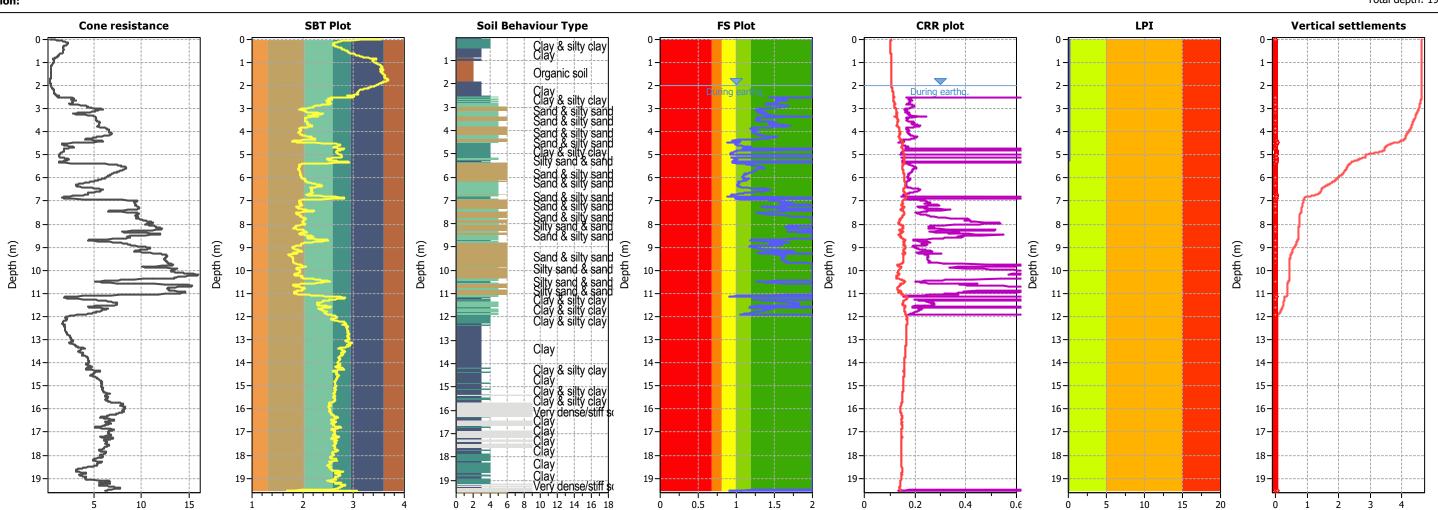
B&I (2014)

B&I (2014)

6.50

Analysis method:

Points to test:


Fines correction method:

Earthquake magnitude M_w:

Peak ground acceleration: 0.19

Project: Location: CPT: CPT05-22
Total depth: 19.54 m

Settlement (cm)

Factor of safety

CRR & CSR

Liquefaction potential

Ic(SBT)

2.00 m

2.00 m

2.60

Use fill:

Fill height:

Fill weight:

 K_{σ} applied:

Trans. detect. applied:

SBT (Robertson et al. 1986)

Clay like behavior

Limit depth applied: Yes

20.00 m

Method based

applied:

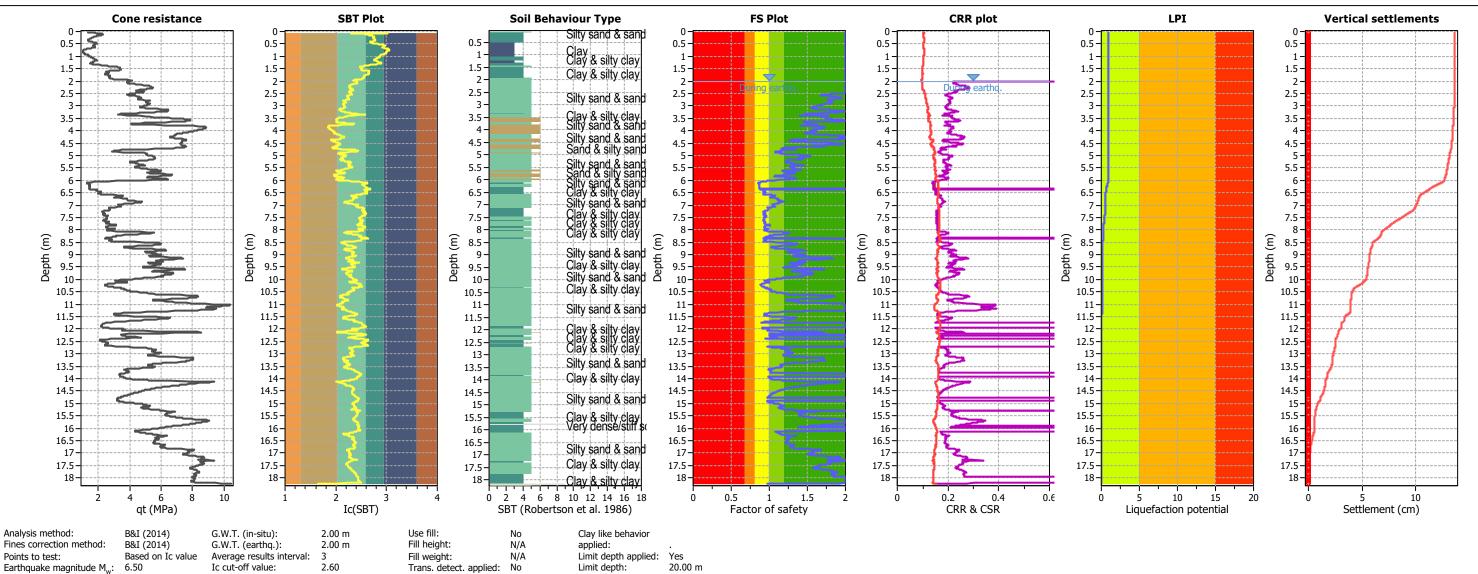
Limit depth:

MSF method:

No

N/A

N/A


No

Project: Location:

Peak ground acceleration: 0.19

CPT: CPT06-22

Total depth: 18.24 m

Unit weight calculation:

Based on SBT

 K_{σ} applied:

MSF method:

Method based